

Ecological site R010XY008ID South Slope Granitic 12-16 PZ PUTR2/PSSPS

Last updated: 9/23/2020 Accessed: 05/14/2025

General information

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

Associated sites

R010XY007ID	Loamy 12-16 PZ
R010XY009ID	Stony Loam 12-16 PZ ARTRT/PSSPS
R010XY014ID	North Slope Granitic 12-16 PZ ARTRX/FEID

Similar sites

Table 1. Dominant plant species

Tree	Not specified
Shrub	Not specified
Herbaceous	Not specified

Physiographic features

This site occurs on undulating to very steep south and west facing slopes. Most slopes are greater than 30 percent. Elevation ranges from 3000 to 5000 feet (914-1524m).

Table 2. Representative physiographic features

Landforms	(1) Hill(2) Canyon(3) Terrace
Flooding frequency	None
Elevation	914–1,524 m
Slope	7–90%
Water table depth	152 cm
Aspect	S, W

Climatic features

The elevation of MLRA 10 ranges from 1791 feet to 9236 feet, with a mean of 4602 feet. Overall, elevation increases from west to east. However, average annual precipitation decreases from west to east, ranging from 16.59 inches to 22.17 inches, with a mean of 19.56 inches, based on 7 long term climate stations throughout the MLRA. In general, precipitation peaks in December and January, with a steady decline to a low in July and August,

then a steep increase during the autumn months. Most of the winter precipitation falls as snow, and maximum annual snowfalls of up to 82 inches have been recorded.

There is considerable variation in temperature throughout the year. Temperatures as low as -52° Fahrenheit and as high as 117° Fahrenheit are on record. Some areas have recorded the occurrence of more than 50 days with temperatures above 90° Fahrenheit. The average maximum annual temperature is 63 degrees F, while the average minimum temperature is 36.2 degrees F.The frost-free period can range from 128 to 152 days, while the freeze-free period can be from 164 to 189 days.

Both the average morning and average afternoon relative humidity values are lowest in July and August, and are below the national average. The number of clear, sunny days peaks during this same period, and is higher then the national average. During the Spring and Summer months high-intensity convective thunderstorms are not unusual.

Table 3. Representative climatic features

Frost-free period (average)	152 days
Freeze-free period (average)	189 days
Precipitation total (average)	559 mm

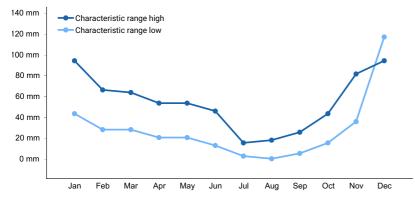


Figure 1. Monthly precipitation range

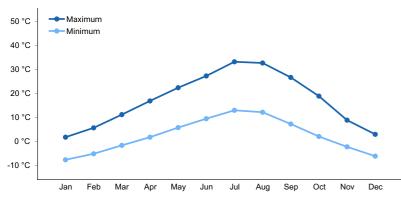


Figure 2. Monthly average minimum and maximum temperature

Influencing water features

This site is not influenced by adjacent wetlands, streams or run on.

Soil features

The soils on this site are generally moderately deep to very deep. The soils are well to excessively drained with moderate to rapid permeability . Runoff is medium to high. Available water holding capacity (AWC) is very low to moderate. The erosion hazard is slight to very severe. The soil textures are coarse sandy loam or sandy loams of granitic origin. Stones and rock outcrops may be present but not in sufficient quantity to affect kind and amount of vegetation. These soils are characterized by a xeric soil moisture regime. Soil temperature regime is mesic.

Table 4. Representative soil features

Surface texture	(1) Fine gravelly coarse sandy loam(2) Gravelly loamy sand(3) Stony sandy loam
Drainage class	Well drained to excessively drained
Permeability class	Moderate to rapid
Soil depth	51–152 cm
Surface fragment cover <=3"	4–30%
Available water capacity (0-101.6cm)	1.52–17.02 cm
Electrical conductivity (0-101.6cm)	0–2 mmhos/cm
Sodium adsorption ratio (0-101.6cm)	0–5
Soil reaction (1:1 water) (0-101.6cm)	5.1-8.4
Subsurface fragment volume <=3" (Depth not specified)	11–45%
Subsurface fragment volume >3" (Depth not specified)	5–20%

Ecological dynamics

The dominant visual aspect of this site is bluebunch wheatgrass and antelope bitterbrush. Composition by weight is approximately 55-65% grass, 10-20% forbs, and 20-30% shrubs.

The Reference State (State 1), moves through many phases depending on the natural and man-made forces that impact the community over time. State 1, described later, indicates some of these phases. The Reference Plant Community Phase is Phase A. The plant species composition of Phase A is listed later under "Reference Plant Community Phase Plant Species Composition".

In the last few thousand years, this site has evolved in a semi-arid climate characterized by dry summers and cold, wet winters. Herbivory has historically occurred on this site at low levels of utilization. Herbivores include mule deer, Rocky Mountain elk, lagomorphs and small rodents.

Fire has historically occurred on the site at intervals of 20-50 years. The Reference Plant Community Phase is dominated by bluebunch wheatgrass in the understory and antelope bitterbrush in the overstory. Foothills sagebrush is usually present. Subdominant species include Nevada bluegrass, Sandberg bluegrass, bottlebrush squirreltail, arrowleaf balsamroot, tapertip hawksbeard and lupine. Total annual production is 800 pounds per acre (888 kilograms per hectare) in a normal year. Production in a favorable year is 1000 pounds per acre (1111

kilograms per hectare). Production in an unfavorable year is 600 pounds per acre (666 kilograms per hectare). Structurally, cool season deep rooted perennial bunchgrasses are very dominant, followed by tall shrubs being more dominant than perennial forbs while shallow rooted bunchgrasses are subdominant.

This site is suitable for late spring, summer, and fall grazing. The steeper slopes will limit livestock movement. Excessive trailing of livestock should be avoided to minimize terracette development and erosion on the steeper slopes. This site provides valuable wildlife food and cover for deer, elk, raptors and other small wildlife species. The site is often key range for mule deer in summer, fall and winter.

This site provides recreational opportunities for hunting, hiking, photography and horseback riding.

Impacts on the Plant Community:

Influence of fire:

In the absence of normal fire frequency, bitterbrush and foothills big sagebrush may become co-dominant. Grasses and forbs decrease as shrubs increase.

When fires become more frequent than historic levels (20-50 years), foothills big sagebrush and bitterbrush are reduced significantly. With continued short fire frequency, foothills big sagebrush and bitterbrush can be completely eliminated along with many of the desirable understory species such as bluebunch wheatgrass and Nevada bluegrass. These species may be replaced by cheatgrass, Sandberg bluegrass and bulbous bluegrass along with a variety of annual and perennial forbs including noxious and invasive plants.

Influence of improper grazing management:

Season-long grazing and/or excessive utilization can be very detrimental to this site. This type of management leads to reduced vigor of the bunchgrasses and possibly bitterbrush. With reduced vigor, recruitment of these species declines. As these species decline, the plant community becomes susceptible to an increase in foothills big sagebrush and noxious and invasive plants.

Continued improper grazing management influences fire frequency by increasing fine fuels. If cheatgrass increases due to improper grazing management and becomes co-dominant with Sandberg bluegrass and other annuals, fires become more frequent.

Proper grazing management that addresses frequency, duration, and intensity of grazing over time, can also keep fine fuels from developing, thereby reducing fire frequency. This can lead to gradual increases in foothills big sagebrush. A planned grazing system can be developed to intentionally accumulate fine fuels in preparation for a prescribed burn. Any brush management should be carefully planned, as a reduction in shrubs without a suitable understory of perennial grasses can increase cheatgrass which will lead to more frequent fire intervals.

Due to the unstable soil surface on this site, improper grazing management usually results in the development of terracettes. On steeper slopes massive soil erosion can occur during intense convection storms.

Weather influences:

Above normal precipitation in March, April and May can dramatically increase total annual production of the plant community. These weather patterns can also increase viable seed production of desirable species to provide for recruitment. Likewise, below normal precipitation during these spring months can significantly reduce total annual production and be detrimental to viable seed production. Overall plant composition is normally not affected when perennials have good vigor.

Below normal temperatures in the spring can have an adverse impact on total production regardless of the precipitation. An early, hard freeze can occasionally kill some plants.

Prolonged drought adversely affects this plant community in several ways. Vigor, recruitment, and production are usually reduced. Mortality can occur, especially in shallow rooted species. Prolonged drought can lead to a reduction in fire frequency.

Influence of insects and disease:

Outbreaks can affect vegetation health, particularly bitterbrush from western tent caterpillars (Malacosoma fragilis). Two consecutive years of defoliation by the tent caterpillar can cause mortality in bitterbrush. An outbreak of a particular insect is usually influenced by weather but no specific data for this site is available.

Influence of noxious and invasive plants:

Many of these species add to the fine-fuel component and lead to increased fire frequency. Many of the annual and perennial invasive species with deep root systems compete with desirable plants for moisture and nutrients. The result is reduced production and change in composition of the understory.

Influence of wildlife:

Big game animals utilize this site yearlong. Their numbers are seldom high enough to adversely affect the plant community. Herbivory can be detrimental to bitterbrush when livestock grazing and browsing by big game occurs at the same time and season. This will occur when both kinds of animal are using the plant in the late summer or fall. The adverse impact is excessive use of the current years' leader growth.

The deer mouse is beneficial to this site as it is the principal vector for planting bitterbrush seed.

Watershed:

Decreased infiltration and increased runoff occur with the increase in foothills sagebrush. Shrub encroachment can be triggered by lack of fire, improper grazing management and prolonged drought. The increased runoff also causes sheet and rill erosion. Abnormally short fire frequency also gives the same results, but to a lesser degree. The long term effect is a transition to a different state.

Plant Community and Sequence:

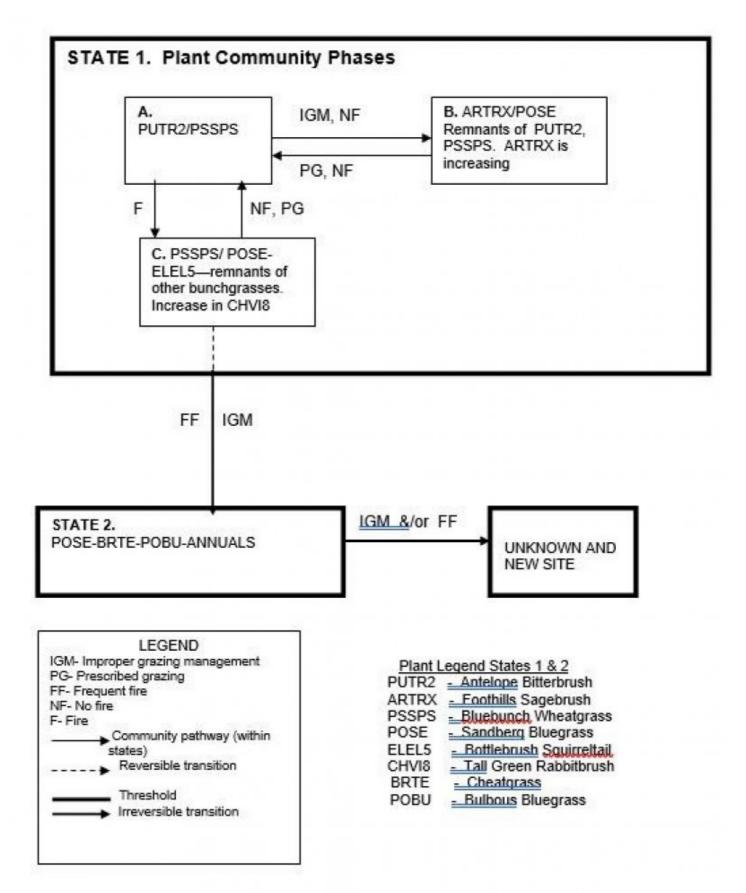
Transition pathways between common vegetation states and phases:

State 1.

Phase A to B. Develops in the absence of fire and improper grazing management.

Phase A to C. Develops with fire.

Phase B to A. Develops with prescribed grazing and no fire.


Phase C to A. Develops with prescribed grazing and no fire.

State 1 Phase C to State 2. Develops through frequent fire with or without prescribed grazing management. This site has crossed the threshold. It is economically impractical to return this state to State 1 with accelerated practices.

State 2 to unknown site. Excessive soil loss and changes in the hydrologic cycle caused by continued improper grazing management and/or frequent fire cause this state to cross the threshold and retrogress to a new site with reduced potential. It is economically impractical to return this state to State 1 with accelerated practices.

Practice Limitations:

Severe limitations exist on this site for seeding and brush management with ground moving equipment due to steep slopes.

State 1 State 1 Phase A

Community 1.1

State 1 Phase A

This plant community has antelope bitterbrush in the overstory with bluebunch wheatgrass dominating the understory. Foothills sagebrush, Sandberg bluegrass, Nevada bluegrass, and arrowleaf balsamroot are subdominant species. Other significant species in the plant community are bottlebrush squirreltail, prairie junegrass, tapertip hawksbeard, and lupine. There can be a variety of other forbs and shrubs present in small amounts. Natural fire frequency is 20-50 years.

Table 5. Ground cover

Tree foliar cover	0%
Shrub/vine/liana foliar cover	0%
Grass/grasslike foliar cover	0%
Forb foliar cover	0%
Non-vascular plants	0%
Biological crusts	0%
Litter	40-50%
Surface fragments >0.25" and <=3"	0%
Surface fragments >3"	0%
Bedrock	0%
Water	0%
Bare ground	0%

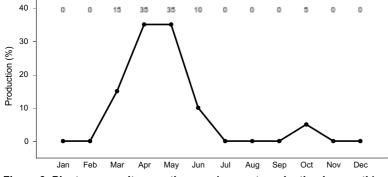
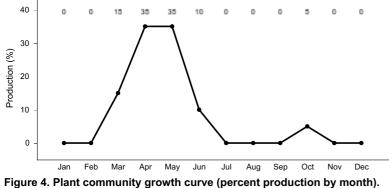


Figure 3. Plant community growth curve (percent production by month). ID0207, ARTRX/PSSPS. State 1.

State 2 State 1 Phase B


Community 2.1 State 1 Phase B

This plant community is dominated by foothills big sagebrush with Sandberg bluegrass in the understory. This state has developed due to improper grazing management and lack of fire. There is a reduced amount of bluebunch wheatgrass, bottlebrush squirreltail, prairie junegrass and antelope bitterbrush. Bitterbrush may be hedged and in low vigor. The deep-rooted perennial bunchgrasses are typically in low vigor. Foothills sagebrush has increased. Some small amounts of cheatgrass or bulbous bluegrass or other annuals may have invaded the site.

Table 6. Ground cover

Tree foliar cover	0%
Shrub/vine/liana foliar cover	0%
Grass/grasslike foliar cover	0%

Forb foliar cover	0%
Non-vascular plants	0%
Biological crusts	0%
Litter	40-50%
Surface fragments >0.25" and <=3"	0%
Surface fragments >3"	0%
Bedrock	0%
Water	0%
Bare ground	0%

ID0207, ARTRX/PSSPS. State 1.

State 3 State 1 Phase C

Community 3.1 State 1 Phase C

This plant community is dominated by bluebunch wheatgrass, Sandberg bluegrass and bottlebrush squirreltail. Forbs remain about in the same proportion as Phase A. Small amounts of foothills sagebrush and bitterbrush are present due to wildfire, but tall green rabbitbrush has increased due to sprouting. Some small amounts of cheatgrass or bulbous bluegrass or other annuals may have invaded the site. This plant community is the result of wildfire.

Table 7. Ground cover

Tree foliar cover	0%
Shrub/vine/liana foliar cover	0%
Grass/grasslike foliar cover	0%
Forb foliar cover	0%
Non-vascular plants	0%
Biological crusts	0%
Litter	40-50%
Surface fragments >0.25" and <=3"	0%
Surface fragments >3"	0%
Bedrock	0%
Water	0%
Bare ground	0%

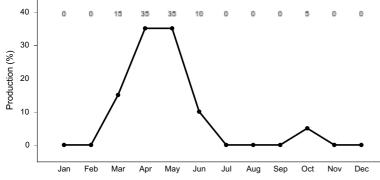
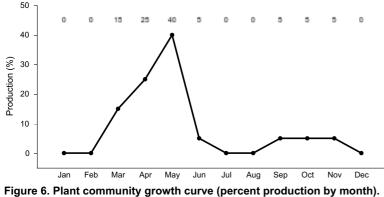


Figure 5. Plant community growth curve (percent production by month). ID0207, ARTRX/PSSPS. State 1.


State 4 State 2

Community 4.1 State 2

This plant community is dominated by Sandberg bluegrass, cheatgrass, bulbous bluegrass and annuals. Root sprouting shrubs such as rabbitbrush and horsebrush can be present, dependent upon, how frequent, fire has occurred. This state has developed due to frequent fires and improper grazing management. Some soil loss has occurred. This site has crossed the threshold. It is economically impractical to return this state to State 1 with accelerated practices.

Table 8. Ground cover

Tree foliar cover	0%
Shrub/vine/liana foliar cover	0%
Grass/grasslike foliar cover	0%
Forb foliar cover	0%
Non-vascular plants	0%
Biological crusts	0%
Litter	40-50%
Surface fragments >0.25" and <=3"	0%
Surface fragments >3"	0%
Bedrock	0%
Water	0%
Bare ground	0%

ID0211, POSE/BRTE-ANNUALS. State 2.

State 5 State 3

Community 5.1 State 3

Table 9. Ground cover

Tree foliar cover	0%
Shrub/vine/liana foliar cover	0%
Grass/grasslike foliar cover	0%
Forb foliar cover	0%
Non-vascular plants	0%
Biological crusts	0%
Litter	40-50%
Surface fragments >0.25" and <=3"	0%
Surface fragments >3"	0%
Bedrock	0%
Water	0%
Bare ground	0%

Additional community tables

Animal community

Wildlife Interpretations.

Animal Community – Wildlife Interpretations

This rangeland ecological site provides diverse habitat for many native wildlife species. Habitat is provided for resident and migratory animals including western toad, sagebrush lizard, western rattlesnake, shrews, bats, jackrabbits, ground squirrels, mice, coyote, red fox, badger, sage-grouse, Ferruginous hawk, prairie falcon, horned lark and western meadowlark. The south facing slopes can provide winter habitat for mule deer and elk. The diverse shrub cover provides suitable habitat for brewer's sparrow and sage thrasher. In some areas encroachment of noxious and invasive plant species (cheatgrass, Medusahead) can replace native plant species which provide critical feed, brood-rearing and nesting cover for a variety of native wildlife. Water features are sparse provided by seasonal streams, artificial water catchments and springs.

State 1 Phase 1.1 - Antelope Bitterbrush/ Bluebunch Wheatgrass Reference Plant Community (RPC): This plant community provides a diversity of grasses, forbs and shrubs used by native insect communities that assist in pollination. The reptile and amphibian community is represented by leopard lizard, short horned lizard, sagebrush lizard, western skink, western rattlesnake, western toad, boreal chorus frog and northern leopard frog. Amphibians are associated with springs and isolated water bodies adjacent to this plant community. Spring developments that capture all available water would preclude the use of these sites by amphibians. Shrub-steppe obligate avian species include the Brewer's sparrow, sage sparrow, sage thrasher and sage-grouse. The site provides excellent brood-rearing habitat for sage-grouse. Nesting habitat for sage-grouse is fair due to the dominance of bitterbrush. The plant community supports habitat needs for mule deer and elk, providing food and cover throughout the year. Antelope bitterbrush is preferred browse for mule deer, available during all seasons. The tall brush provides excellent thermal and young of year cover for deer and elk. A diverse small mammal population including goldenmantled ground squirrels, chipmunks and yellow-bellied marmots utilize this plant community. The deer mouse is the primary vector for planting bitterbrush seed.

State 1 Phase 1.2 – Foothills Big Sagebrush/Sandberg Bluegrass/ Plant Community: This state has developed due

to the lack of fire and improper grazing management. An increase in canopy cover of sagebrush contributes to a sparse herbaceous understory. Grasses, forbs and shrubs, are used by native insects that assist in pollination but the reduced herbaceous understory results in lower diversity and numbers of insects. The reptile community is represented by leopard lizard, short horned lizard, sagebrush lizard, western skink and western rattlesnake. Diversity and populations of the reptile community would decline with a reduced understory and associated loss of invertebrate habitat. Spring developments that capture all available water would preclude the use of these sites by amphibians. Key shrub-steppe obligate avians include Brewer's sparrow, sage sparrow, sage thrasher and sage-grouse. An increase in sagebrush canopycover may increase habitat quality for these avians. The quality of brood-rearing habitat for sage-grouse may increase if proper plant management is practiced. The reduction of bitterbrush in the plant community reduces the quality of winter forage for mule deer and elk. A diverse small mammal population including golden-mantled ground squirrels, chipmunks, deer mouse and yellow-bellied marmots would utilize the habitat. The deer mouse is the primary vector for planting bitterbrush seed.

State 1 Phase 1.3 - Bluebunch Wheatgrass/ Sandberg Bluegrass/ Bottlebrush Squirreltail Plant Community: This plant community is the result of fire. The plant community, dominated by herbaceous vegetation with little to no sagebrush or antelope bitterbrush reduces vertical structure for wildlife. Insect diversity would be reduced. A diverse native forb plant community would still support select pollinators. An increase in rabbitbrush would also provide fall pollinator habitat. Reptile use including short horned lizard, sagebrush lizard and western rattlesnakes would be limited due to the absence of sagebrush and antelope bitterbrush. The dominance of herbaceous vegetation with no sagebrush or antelope bitterbrush would eliminate use of these areas for nesting by Brewer's sparrow, sage sparrow, sage thrasher, and sage-grouse. This plant community provides limited brood-rearing habitat for sage-grouse when sagebrush cover is adjacent to the site. Sage-grouse would not use the area for winter habitat. The dominant herbaceous vegetation improves habitat for grassland avian species (horned lark and western meadowlark). Mule deer and elk forage use would be seasonal (early spring through fall) but the site would offer little thermal cover and young of year cover. The diversity of small mammal populations would be dominated by open grassland species like the Columbian ground squirrel.

State 2 –Sandberg Bluegrass/ Cheatgrass/ Bulbous Bluegrass/ Annuals Plant Community: This plant community is the result of continued improper grazing management and frequent fire. Vertical structure is replaced by rabbitbrushes and horsebrush. Insect diversity and populations would be reduced with the loss of forbs and the shift in dominance of shrub species. Limited habitat is provided for native reptile species. Vertical structure is present but the reduced insect community will reduce quality of reptile habitat. This plant community does not support the habitat requirements for sage-grouse and provides limited habitat for sage thrasher, Brewer's sparrow or sage sparrow. Birds of prey including hawks and falcons may range throughout these areas looking for prey species. Large mammals may utilize the herbaceous vegetation in the early part of the year when the invasive annuals (cheatgrass) are more palatable. At other times of the year large mammals would not regularly utilize these areas due to poor food and cover conditions. Small mammal populations would be reduced due to less favorable understory vegetation and reduced insect populations.

Grazing Interpretations.

This site is best suited to spring/ fall grazing by domestic livestock.

Estimated initial stocking rate will be determined with the landowner or decision-maker. They will be based on the inventory which includes species, composition, similarity index, production, past use history, season of use and seasonal preference. Calculations used to determine estimated initial stocking rate will be based on forage preference ratings.

Hydrological functions

The soils in this group are in hydrologic group B and C. They have moderately high runoff potential.

Recreational uses

The site provides upland game bird and occasionally big game hunting. Mule deer viewing opportunities are good during the winter. This site offers fair value for observing early spring blooming forbs as well as blooming bitterbrush.

Wood products

None

Other products

None

Other information

Field Offices

Weiser, ID Emmett, ID Mountain Home, ID Meridian, ID Cascade, ID

Inventory data references

Information presented here has been derived from NRCS clipping and other inventory data. Also, field knowledge of range-trained personnel was used. Those involved in developing this site description include: Dave Franzen, co-owner, Intermountain Rangeland Consultants, LLC Jacy Gibbs, co-owner, Intermountain Rangeland Consultants, LLC Jim Cornwell, Range Management Specialist, IASCD Bredan Brazee, State Rangeland Management Specialist, NRCS, Idaho Lee Brooks, Range Management Specialist, IASCD Leah Juarros, Resource Soil Scientist, NRCS, Idaho

Other references

Hironaka, M., M.A. Fosberg, A. H. Winward. 1983. Sagebrush- Grass Habitat Types of Southern Idaho. University of Idaho. Moscow, Idaho. Bulletin Number 35.

USDA Forest Service, Rocky Mountain Research Station. 2004. Restoring Western Ranges and Wildlands. General Technical Report RMRS-GTR-136-vols. 1-3.

USDA, NRCS.2001. The PLANTS Database, Version 3.1 (http://plants.usda.gov.). National Plant Data Center, Baton Rouge, LA 70874-4490 USA

USDA, Forest Service, Fire Effects Information Database. 2004. www.fs.fed.us/database.

USDI Bureau of Land Management, US Geological Survey; USDA Natural Resources Conservation Service, Agricultural Research Service; Interpreting indicators of Rangeland Health. Technical Reference 1734-6; version 4-2005.

Approval

Kendra Moseley, 9/23/2020

Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

Author(s)/participant(s)	Dave Franzen and Jacy Gibbs Intermountain Range Consultants 17700 Fargo Rd. Wilder, ID 83676
Contact for lead author	Brendan Brazee, State Rangeland Management Specialist USDA-NRCS 9173 W. Barnes Drive, Suite C, Boise, ID 83709
Date	03/25/2008
Approved by	Kendra Moseley
Approval date	
Composition (Indicators 10 and 12) based on	Annual Production

Indicators

- 1. Number and extent of rills: can occur on this site. If rills are present they are likely to occur on the steeper slopes and immediately following wildfire. Coarse surface gravels limit rill development.
- 2. **Presence of water flow patterns:** can occur on this site. When they occur they are short and disrupted by cool season grasses and tall shrubs and are not extensive. Water infiltration is generally rapid for the site.
- 3. Number and height of erosional pedestals or terracettes: pedestals are rare on this site. Terracettes are common. Significant accumulation of coarse surface fragments develops on the uphill side of larger perennial grasses and shrubs. This accumulation is from concentrated flow and hoof/ foot traffic. Terracettes are a natural occurrence on the site.
- 4. Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground): is approximately 50-60%. This site is naturally unstable due to coarse surface fragments.
- 5. Number of gullies and erosion associated with gullies: do not occur on this site.
- 6. Extent of wind scoured, blowouts and/or depositional areas: usually not present due to coarse textured, gravelly soi surface.
- 7. Amount of litter movement (describe size and distance expected to travel): fine litter in the interspaces may move up to 3 feet following a significant run-off event. It generally moves onto terracettes. Coarse litter generally does not move except on the steeper slopes. Litter is also moved mechanically by hoof/ foot traffic.
- 8. Soil surface (top few mm) resistance to erosion (stability values are averages most sites will show a range of values): Values should range from 4 to 6 but needs to be tested.
- 9. Soil surface structure and SOM content (include type of structure and A-horizon color and thickness): structure ranges from weak fine granular to moderate medium granular. The A or A1 horizon is typically2 to10 inches thick. Soil

- 10. Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff: bunchgrasses, especially deep-rooted perennials, slow run-off and increase infiltration. Tall shrubs accumulate snow in the interspaces.
- 11. Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site): not present.
- 12. Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):

Dominant: cool season deep rooted perennial bunchgrasses.

Sub-dominant: tall shrubs>perennial forbs.

Other:

Additional:

- 13. Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence): foothills big sagebrush and bitterbrush will become decadent in the absence of fire and ungulate grazing. Grass and forb mortality will occur as tall shrubs increase. Some grasses and forbs are susceptible to hoof/ foot traffic.
- 14. Average percent litter cover (%) and depth (in): additional litter cover data is needed but is expected to be 5-10 percent to a depth of <0.1 inches. Under mature shrubs litter is >0.5 inches deep and is 90-100 percent ground cover.
- 15. Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annualproduction): is 800 pounds per acre (888 kilograms per hectare) in a year with normal temperatures and precipitation. Perennial grasses produce 55-65 percent of the total production, forbs 10-20 percent and shrubs 20-30 percent.
- 16. Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site: include cheatgrass, leafy spurge, dalmatian toadflax, bulbous bluegrass, rush skeletonweed, musk and scotch thistle and diffuse, Russian and spotted knapweed.
- 17. Perennial plant reproductive capability: all functional groups have the potential to reproduce in most years.