

Ecological site R028BY092NV CALCAREOUS CLAYPAN 14-16 P.Z.

Accessed: 05/12/2025

General information

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

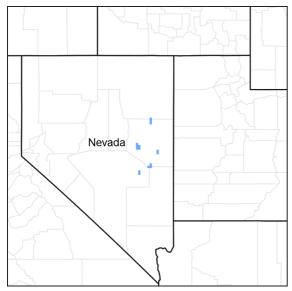


Figure 1. Mapped extent

Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated.

MLRA notes

Major Land Resource Area (MLRA): 028B-Central Nevada Basin and Range

MLRA 28B occurs entirely in Nevada and comprises about 23,555 square miles (61,035 square kilometers). More than nine-tenths of this MLRA is federally owned. This area is in the Great Basin Section of the Basin and Range Province of the Intermontane Plateaus. It is an area of nearly level, aggraded desert basins and valleys between a series of mountain ranges trending north to south. The basins are bordered by long, gently sloping to strongly sloping alluvial fans. The mountains are uplifted fault blocks with steep sideslopes. Many of the valleys are closed basins containing sinks or playas. Elevation ranges from 4,900 to 6,550 feet (1,495 to 1,995 meters) in the valleys and basins and from 6,550 to 11,900 feet (1,995 to 3,630 meters) in the mountains.

The mountains in the southern half are dominated by andesite and basalt rocks that were formed in the Miocene and Oligocene. Paleozoic and older carbonate rocks are prominent in the mountains to the north. Scattered outcrops of older Tertiary intrusives and very young tuffaceous sediments are throughout this area. The valleys consist mostly of alluvial fill, but lake deposits are at the lowest elevations in the closed basins. The alluvial valley fill consists of cobbles, gravel, and coarse sand near the mountains in the apex of the alluvial fans. Sands, silts, and clays are on the distal ends of the fans.

The average annual precipitation ranges from 4 to 12 inches (100 to 305 millimeters) in most areas on the valley floors. Average annual precipitation in the mountains ranges from 8 to 36 inches (205 to 915 millimeters) depending on elevation. The driest period is from midsummer to midautumn. The average annual temperature is 34 to 52 degrees F (1 to 11 degrees C). The freeze-free period averages 125 days and ranges from 80 to 170 days, decreasing in length with elevation.

The dominant soil orders in this MLRA are Aridisols, Entisols, and Mollisols. The soils in the area dominantly have a mesic soil temperature regime, an aridic or xeric soil moisture regime, and mixed or carbonatic mineralogy. They generally are well drained, loamy or loamyskeletal, and shallow to very deep.

Nevada's climate is predominantly arid, with large daily ranges of temperature, infrequent severe storms and heavy snowfall in the higher mountains. Three basic geographical factors largely influence Nevada's climate: continentality, latitude, and elevation. The strong continental effect is expressed in the form of both dryness and large temperature variations. Nevada lies on the eastern, lee side of the Sierra Nevada Range, a massive mountain barrier that markedly influences the climate of the State. The prevailing winds are from the west, and as the warm moist air from the Pacific Ocean ascend the western slopes of the Sierra Range, the air cools, condensation occurs and most of the moisture falls as precipitation. As the air descends the eastern slope, it is warmed by compression, and very little precipitation occurs. The effects of this mountain barrier are felt not only in the West but throughout the state, as a result the lowlands of Nevada are largely desert or steppes.

The temperature regime is also affected by the blocking of the inland-moving maritime air. Nevada sheltered from maritime winds, has a continental climate with well-developed seasons and the terrain responds quickly to changes in solar heating. Nevada lies within the midlatitude belt of prevailing westerly winds which occur most of the year. These winds bring frequent changes in weather during the late fall, winter and spring months, when most of the precipitation occurs.

To the south of the mid-latitude westerlies, lies a zone of high pressure in subtropical latitudes, with a center over the Pacific Ocean. In the summer, this high-pressure belt shifts northward over the latitudes of Nevada, blocking storms from the ocean. The resulting weather is mostly clear and dry during the summer and early fall, with occasional thundershowers. The eastern portion of the state receives noteworthy summer thunderstorms generated from monsoonal moisture pushed up from the Gulf of California, known as the North American monsoon. The monsoon system peaks in August and by October the monsoon high over the Western U.S. begins to weaken and the precipitation retreats southward towards the tropics (NOAA 2004).

Ecological site concept

This site occurs on summits and sideslopes of mountains on all aspects. Slopes range from 4 to 30 percent. Elevations are 8000 to 9200 feet.

The soils associated with this site are very deep, well drained and formed in residuum and colluvium derived from mixed parent material. An argillic horizon occurs within 20 cm which is effervescent and has secondary carbonates below about 43 cm.

The reference state is dominated by bluebunch wheatgrass, muttongrass and low sagebrush. Average annual production ranges from 500 to 800 pounds per acre.

Important abiotic factors contributing to the presence of this ecological site include depth to the argillic horizon and texture class which favor low sagebrush over other species of sagebrush. The upper soil profile is wet - non satiated during the early spring months following snow melt. The fine textured subsoil swells on wetting and shrinks and cracks upon drying. These subsoils interfere with deep root development, but some roots, mainly taproots of shrubs and forbs, penetrate the subsoil along vertical cleavage planes.

Associated sites

R028BY033NV	GRAVELLY CLAY 14+ P.Z.
R028BY038NV	MOUNTAIN RIDGE 14+ P.Z.
R028BY088NV	CALCAREOUS LOAM 14-16 P.Z.
R028BY091NV	GRAVELLY CALCAREOUS LOAM 14+ P.Z. burned phase

Similar sites

R028BY035NV	GRAVELLY CLAYPAN 14+ P.Z.
	PUTR2-ARAR8 codominant shrubs; soils very deep, no argillic horizon and have >50% rock fragments by
	volume

R028BY036NV	CLAYPAN 14+ P.Z. PSSP dominant grass; higher elevations; shallow soils from volcanic parent material, not calcareous.
R028BY037NV	CLAYPAN 12-14 P.Z. PSSP-ACTH7 codominant grasses; shallow soils from volcanic parent material, not calcareous.
	COBBLY CLAYPAN 12-14 P.Z. PSSP-ACTH7 codominant grasses

Table 1. Dominant plant species

Tree	Not specified
Shrub	(1) Artemisia arbuscula
Herbaceous	(1) Pseudoroegneria spicata(2) Poa fendleriana

Physiographic features

This site occurs on summits and sideslopes mountains on all aspects. Slopes typically range from 4 to 30 percent, but may be as high as 50 percent in some areas. Elevations are 7500 to 9200 feet.

Table 2. Representative physiographic features

Landforms	(1) Mountain
Flooding frequency	None
Ponding frequency	None
Elevation	2,286–2,804 m
Slope	4–30%
Aspect	Aspect is not a significant factor

Climatic features

The climate associated with this site is semiarid, characterized by cold, moist winters and warm, dry summers.

Average annual precipitation ranges from 14 to 16 inches. Mean annual air temperature is about 43 to 45 degrees F. The average growing season is about 70 to 100 days. Weather stations with a long term data record are currently not available for this ecological site. Associated climate data will be updated when information becomes available.

Influencing water features

Influencing water features are not associated with this site.

Soil features

The soils associated with this site are very deep, well drained and formed in residuum & colluvium derived from mixed parent material. Soils are characterized by an argillic horizon with an abrupt boundary within 20cm of the soil surface. The argillic horizon is non-effervescent in the upper part and slightly to strongly effervescent in the lower part. Secondary calcium carbonate occurs below 43 to 76cm. Runoff is high and available water holding capacity is moderate. Soil moisture regime is xeric bordering on aridic and soil temperature regime is frigid. The soil series associated with this site is Eoj.

The representative soil series is Eoj, a Fine, smectitic, frigid Typic Palexerolls. Diagnostic horizons include a mollic epipedon from the soil surface to 43 cm and an argillic horizon from 20 to 152 cm. Clay content in the particle control section averages 40 to 60 percent. Rock fragments range from 15 to 35 percent stones, cobbles and gravel, mainly gravel and cobbles. Reaction is slightly alkaline or moderately alkaline. Soils are slightly to strongly

effervescent in the lower profile. Soils are derived from quartzite, conglomerate and some limestone.

Table 3. Representative soil features

<u> </u>	
Parent material	(1) Colluvium–quartzite
Surface texture	(1) Very stony loam
Family particle size	(1) Loamy
Drainage class	Well drained
Permeability class	Slow to moderately slow
Soil depth	127–152 cm
Surface fragment cover <=3"	15–30%
Surface fragment cover >3"	5–25%
Available water capacity (0-101.6cm)	7.62-11.43 cm
Calcium carbonate equivalent (0-101.6cm)	0–2%
Electrical conductivity (0-101.6cm)	0 mmhos/cm
Sodium adsorption ratio (0-101.6cm)	0
Soil reaction (1:1 water) (0-101.6cm)	7.4–8.4
Subsurface fragment volume <=3" (Depth not specified)	10–25%
Subsurface fragment volume >3" (Depth not specified)	10–25%

Ecological dynamics

An ecological site is the product of all the environmental factors responsible for its development and it has a set of key characteristics that influence a site's resilience to disturbance and resistance to invasives. Key characteristics include 1) climate (precipitation, temperature), 2) topography (aspect, slope, elevation, and landform), 3) hydrology (infiltration, runoff), 4) soils (depth, texture, structure, organic matter), 5) plant communities (functional groups, productivity), and 6) natural disturbance regime (fire, herbivory, etc.) (Caudle 2013). Biotic factors that influence resilience include site productivity, species composition and structure, and population regulation and regeneration (Chambers et al. 2013).

This ecological site is dominated by deep-rooted cool season, perennial bunchgrasses and long-lived shrubs (50+ years) with high root to shoot ratios. The dominant shrubs usually root to the full depth of the winter-spring soil moisture recharge, which ranges from 1.0 to over 3.0 m (Dobrowolski et al. 1990). Root length of mature sagebrush plants was measured to a depth of 2 meters in alluvial soils in Utah (Richards and Caldwell 1987). However, community types with low sagebrush as the dominant shrub were found to have soil depths and thus available rooting depths of 71 to 81 cm in a study in northeast Nevada (Jensen 1990). These shrubs have a flexible generalized root system with development of both deep taproots and laterals near the surface (Comstock and Ehleringer 1992).

Periodic drought regularly influences sagebrush ecosystems and drought duration and severity has increased throughout the 20th century in much of the Intermountain West. Major shifts away from historical precipitation patterns have the greatest potential to alter ecosystem function and productivity. Species composition and productivity can be altered by the timing of precipitation and water availability with the soil profile (Bates et al. 2006). Low sagebrush is fairly drought tolerant but also tolerates saturated soils during some portion of the growing season. Low sagebrush is may also be susceptible to the sagebrush defoliator, Aroga moth. Aroga moth can partially or entirely kill individual plants or entire stands of big sagebrush (Furniss and Barr 1975), but the research is inconclusive of the damage sustained by low sagebrush populations.

The Great Basin sagebrush communities have high spatial and temporal variability in precipitation both among

years and within growing seasons. Nutrient availability is typically low but increases with elevation and closely follows moisture availability. The invasibility of plant communities is often linked to resource availability. Disturbance can decrease resource uptake due to damage or mortality of the native species and depressed competition or can increase resource pools by the decomposition of dead plant material following disturbance. The invasion of sagebrush communities by cheatgrass has been linked to disturbances (fire, abusive grazing) that have resulted in fluctuations in resources (Chambers et al. 2007).

The range and density of singleleaf pinyon and Utah juniper has increased since the middle of the nineteenth century (Tausch 1999, Miller and Tausch 2000). Causes for expansion of trees into sagebrush ecosystems include wildfire suppression, historic livestock grazing, and climate change (Bunting 1994). Mean fire return intervals prior to European settlement in low sagebrush ecosystems were greater than 100 years, however frequent enough to inhibit the encroachment or infilling of singleleaf pinyon and Utah juniper into these low productive sagebrush cover types (Miller and Tausch 2000). Thus, trees were isolated to fire-safe areas such as rocky outcroppings and areas with low-productivity. An increase in crown density causes a decrease in understory perennial vegetation and an increase in bare ground. This allows for the invasion of non-native annual species such as cheatgrass. With annual species in the understory wildfire can become more frequent and increase in intensity.

This ecological site has low to moderate resilience to disturbance and resistance to invasion. Increased resilience increases with elevation, aspect, increased precipitation and increased nutrient availability. Five possible alternative stable states have been identified for this site.

Fire Ecology:

Fire return intervals have been estimated at 100 to 200 years in black sagebrush dominated sites (Kitchen and McArthur 2007) and likely is similar in the low sagebrush ecosystem; however, historically fires were probably patchy due to the low productivity of these sites. Fine fuel loads generally average 100 to 400 pounds per acre (110- 450 kg/ha) but are occasionally as high as 600 pounds per acre (680 kg/ha) in low sagebrush habitat types (Bradley et al. 1992). Recovery time of low sagebrush following fire is variable (Young 1983). After fire, if regeneration conditions are favorable, low sagebrush recovers in 2 to 5 years, however on harsh sites where cover is low to begin with and/or erosion occurs after fire, recovery may require more than 10 years (Young 1983). Slow regeneration may subsequently worsen erosion (Blaisdell et al. 1982).

Fire will remove aboveground biomass from bluebunch wheatgrass but plant mortality is generally low (Robberecht and Defossé 1995) because the buds are underground (Conrad and Poulton 1966) or protected by foliage. Uresk et al. (1976) reported burning increased vegetative and reproductive vigor of bluebunch wheatgrass. Thus, bluebunch wheatgrass is considered to experience slight damage to fire but is more susceptible in drought years (Young 1983). Plant response will vary depending on season, fire severity, fire intensity and post-fire soil moisture availability.

Cheatgrass has been found to be a highly successful competitor with seedlings of this needlegrass and may preclude reestablishment (Evans and Young 1978).

Muttongrass is top killed by fire but will resprout after low to moderate severity fires. A study by Vose and White (1991) in an open sawtimber site, found minimal difference in overall effect of burning on mutton grass. Low sagebrush is killed by fire and does not sprout (Young 1983). Establishment after fire is from seed, generally blown in and not from the seed bank (Bradley et al. 1992). Fire risk is greatest following a wet, productive year when there is greater production of fine fuels (Beardall and Sylvester 1976). Antelope bitterbrush is moderately fire tolerant (McConnell and Smith 1977). It regenerates by seed and resprouting (Blaisdell and Mueggler 1956, McArthur et al. 1982), however sprouting ability is highly variable and has been attributed to genetics, plant age, phenology, soil moisture and texture and fire severity (Blaisdell and Mueggler 1956, Blaisdell et al. 1982, Clark et al. 1982, Cook et al. 1994). Bitterbrush sprouts from a region on the stem approximately 1.5 inches above and below the soil surface; the plant rarely sprouts if the root crown is killed by fire (Blaisdell and Mueggler 1956). Low intensity fires may allow for bitterbrush to sprout; however, community response also depends on soil moisture levels at time of fire (Murray 1983). Lower soil moisture allows more charring of the stem below ground level (Blaisdell and Mueggler 1956), thus sprouting will usually be more successful after a spring fire than after a fire in summer or fall (Murray 1983, Busse et al. 2000, Kerns et al. 2006). If cheatgrass is present, bitterbrush seedling success is much lower. The factor that most limits establishment of bitterbrush seedlings is competition for water resources with the invasive species cheatgrass (Clements and Young 2002).

Singleleaf pinyon and Utah juniper are usually killed by fire, and are most vulnerable to fire when they are under four feet tall (Bradley et al. 1992). Larger trees, because they have foliage farther from the ground and thicker bark, can survive low severity fires but mortality does occur when 60% or more of the crown is scorched. With the low

production of the understory vegetation, high severity fires within this plant community were not likely and rarely became crown fires (Bradley et al. 1992, Miller and Tausch 2000). Tree density on this site increases with grazing management that favors the removal of fine fuels and management focused on fire suppression. With an increase of cheatgrass in the understory, fire severity is likely to increase. Singleleaf pinyon and Utah juniper reestablishes by seed from nearby seed source or surviving seeds. Utah juniper begins to produce seed at about 30 years old (Bradley et al. 1992). Seeds establish best through the use of a nurse plant such as sagebrush and rabbitbrush (Everett and Ward 1984, Tausch and West 1988, Bradley et al. 1992).

State and transition model

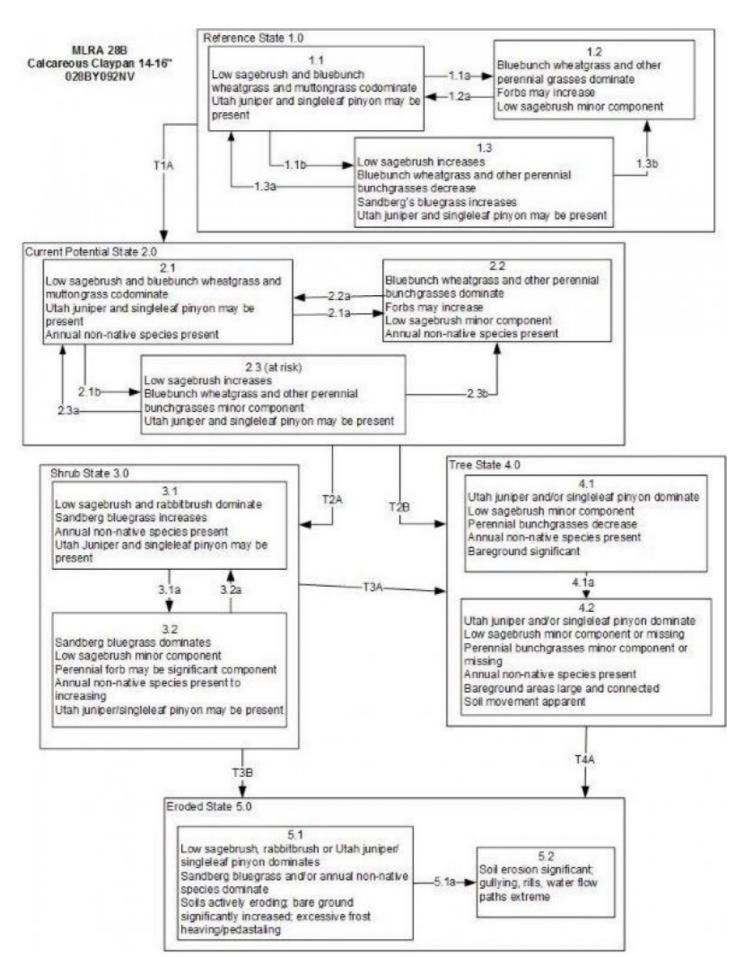


Figure 2. State and Transition Model

MLRA 28 Calcareous Claypan 14-16" 028BY092NV

Reference State 1.0 Community Phase Pathways

- 1.1a: Low severity fire creates grass/sagebrush mosaic; high severity fire significantly reduces sagebrush cover and leads to early/mid-seral community, dominated by grasses and forbs.
- 1.1b: Time and lack of disturbance such as fire or long-term drought. Excessive herbivory would also reduce perennial understory.
- 1.2a: Time and lack of disturbance allows for shrub regeneration.
- 1.3a: Low severity fire and/or herbivory
- 1.3b: High severity fire significantly reduces sagebrush.

Transition T1A: Introduction of non-native species such as bulbous bluegrass, cheatgrass and thistles.

Current Potential State 2.0 Community Phase Pathways

- 2.1a: Low severity fire creates grass/sagebrush mosaic; high severity fire significantly reduces sagebrush cover and leads to early/mid-seral community dominated by grasses and forbs; non-native annual species present.
- Time and lack of disturbance such fire or long-term drought. Inappropriate grazing management may also reduce perennial understory.
- 2.2a: Time and lack of disturbance allows for shrub regeneration
- 2.3a: Low severity fire and/or grazing management to reduce shrub cover
- 2.3b: High severity fire significantly reduces sagebrush. Brush management with minimal soil disturbance; late-fall/winter grazing causing mechanical damage to sagebrush.

Transition T2A: Inappropriate grazing management (3.1). Fire or brush treatment; may be coupled with inappropriate grazing management (3.2).

Transition T2B: Time and lack of disturbance allows for maturation of trees, may be coupled with inappropriate grazing management (4.1).

Shrub State 3.0 Community Phase Pathways

- 3.1a: Fire or brush management (i.e. mowing) with minimal soil disturbance.
- 3.2a: Time and lack of disturbance (unlikely to occur)

Transition T3A: Time and lack of disturbance allows for tree maturation; may be coupled with inappropriate grazing management (4.1).

Transition T3B: Inappropriate grazing management (5.1).

Tree State 4.0 Community Phase Pathways

4.1a: Time and lack of disturbance allows maturation of tree community.

Transition T4A: Catastrophic fire and/or inappropriate tree removal practices (5.1)

Eroded State 5.0 Community Phase Pathways

5.1a: Fire or brush management (i.e. mowing) with minimal soil disturbance

8/26/14 AW

 -edited T3B- not fire induced by heavy grazing causing a disruption on the soil surface (see note 9/13/12 PN-13, PN-19, 7/18/13 PN-19)

Figure 3. Legend

State 1

Reference State

The Reference State 1.0 is a representative of the natural range of variability under pristine conditions. The reference state has 3 general community phases; a shrub-grass dominant phase, a perennial grass dominant phase and a shrub dominant phase. State dynamics are maintained by interactions between climatic patterns and disturbance regimes. Negative feedbacks enhance ecosystem resilience and contribute to the stability of the state. These include the presence of all structural and functional groups, low fine fuel loads, and retention of organic matter and nutrients. Plant community phase changes are primarily driven by fire, periodic drought and/or insect or

disease attack.

Community 1.1 Community Phase

This community is dominated by low sagebrush, antelope bitterbrush, Utah serviceberry, bluebunch wheatgrass, muttongrass and Canby's bluegrass. Forbs and other grasses make up smaller components. Utah juniper and singleleaf pinyon are described in the site concept and may or may not be present in low densities. Potential vegetative composition is about 50% grasses, 10% forbs and 40% shrubs and trees. Approximate ground cover (basal and crown) is 15 to 20 percent.

Table 4. Annual production by plant type

Plant Type	Low (Kg/Hectare)	Representative Value (Kg/Hectare)	High (Kg/Hectare)
Grass/Grasslike	280	336	448
Shrub/Vine	217	252	332
Forb	56	67	90
Tree	7	17	27
Total	560	672	897

Community 1.2 Community Phase

This community phase is characteristic of a post-disturbance, early/mid-seral community. Bluebunch wheatgrass and other perennial bunchgrasses dominate. Depending on fire severity patches of intact sagebrush may remain. Rabbitbrush and other sprouting shrubs may be present. Perennial forbs may be a significant component for a number of years following fire and may dominate in the higher elevation sites.

Community 1.3 Community Phase

Sagebrush increases in the absence of disturbance. Decadent sagebrush dominates the overstory and the deeprooted perennial bunchgrasses in the understory are reduced either from competition with shrubs and/or from herbivory.

Pathway a Community 1.1 to 1.2

Fire will decrease or eliminate the overstory of sagebrush and allow for the perennial bunchgrasses to dominate the site. Fires will typically be low severity resulting in a mosaic pattern due to low fuel loads. A fire following an unusually wet spring may be more severe and reduce sagebrush cover to trace amounts.

Pathway b Community 1.1 to 1.3

Time and lack of disturbance such as fire allows for sagebrush to increase and become decadent. Chronic drought, herbivory, or combinations of these will cause a decline in perennial bunchgrasses and fine fuels leading to a reduced fire frequency and allowing sagebrush to dominate the site.

Pathway a Community 1.2 to 1.1

Time and lack of disturbance will allow sagebrush to establish.

Pathway a Community 1.3 to 1.1

A low severity fire, herbivory or combinations will reduce the sagebrush overstory and create a sagebrush/grass mosaic.

Pathway b Community 1.3 to 1.2

Fire will decrease or eliminate the overstory of sagebrush and allow for the perennial bunchgrasses to dominate the site. Fires may be high severity in this community phase due to the dominance of sagebrush resulting in removal of overstory shrub community.

State 2

Current Potential State

This state is similar to the Reference State 1.0 with three similar community phases. Ecological function has not changed, however the resiliency of the state has been reduced by the presence of invasive weeds. Non-natives may increase in abundance but will not become dominant within this State. These non-natives can be highly flammable and can promote fire where historically fire had been infrequent. Negative feedbacks enhance ecosystem resilience and contribute to the stability of the state. These feedbacks include the presence of all structural and functional groups, low fine fuel loads, and retention of organic matter and nutrients. Positive feedbacks decrease ecosystem resilience and stability of the state. These include the non-natives' high seed output, persistent seed bank, rapid growth rate, ability to cross pollinate, and adaptations for seed dispersal.

Community 2.1 Community Phase

This community phase is similar to the Reference State Community Phase 1.1, with the presence of non-native species in trace amounts. Low sagebrush, antelope bitterbrush, Utah serviceberry, bluebunch wheatgrass, muttongrass and Canby's bluegrass dominate the site. Forbs and other shrubs and grasses make up smaller components of this site. Utah juniper and singleleaf pinyon are described in the site concept and may or may not be present in low densities.

Community 2.2 Community Phase

This community phase is characteristic of a post-disturbance, early to mid-seral community where annual nonnative species are present. Sagebrush is present in trace amounts; perennial bunchgrasses dominate the site. Depending on fire severity or intensity of Aroga moth infestations, patches of intact sagebrush may remain. Rabbitbrush may be sprouting or dominant in the community. Perennial forbs may be a significant component for a number of years and may dominate in the higher elevation sites. Annual non-native species are stable or increasing within the community.

Community 2.3 Community Phase (At Risk)

This community is at risk of crossing a threshold to another state. Sagebrush dominates the overstory and perennial bunchgrasses in the understory are reduced, either from competition with shrubs or from inappropriate grazing, or from both. Rabbitbrush may be a significant component. Sandberg bluegrass may increase and become codominate with deep rooted bunchgrasses. Utah juniper and/or singleleaf pinyon may be present and without management will likely increase. Annual non-native species may be stable or increasing due to lack of competition with perennial bunchgrasses. This site is susceptible to further degradation from grazing, drought, and fire.

Pathway a Community 2.1 to 2.2

Fire reduces the shrub overstory and allows for perennial bunchgrasses to dominate the site. Fires are typically low severity resulting in a mosaic pattern due to low fuel loads. A fire following an unusually wet spring or a change in management favoring an increase in fine fuels may be more severe and reduce sagebrush cover to trace amounts. Annual non-native species are likely to increase after fire.

Pathway b Community 2.1 to 2.3

Time and lack of disturbance allows for sagebrush to increase and become decadent. Chronic drought reduces fine fuels and leads to a reduced fire frequency, allowing sagebrush to dominate the site. Inappropriate grazing management reduces the perennial bunchgrass understory; conversely Sandberg bluegrass and muttongrass may increase in the understory depending on grazing management.

Pathway a Community 2.2 to 2.1

Time and lack of disturbance and/or grazing management that favors the establishment and growth of sagebrush allows the shrub component to recover. The establishment of low sagebrush can take many years.

Pathway a Community 2.3 to 2.1

A change in grazing management that reduces shrubs will allow for the perennial bunchgrasses in the understory to increase. Heavy late-fall or winter grazing may cause mechanical damage and subsequent death to sagebrush, facilitating an increase in the herbaceous understory. Brush treatments with minimal soil disturbance will also decrease sagebrush and release the perennial understory. A low severity fire would decrease the overstory of sagebrush and allow for the understory perennial grasses to increase. Due to low fuel loads in this State, fires will likely be small creating a mosaic pattern. Annual non-native species are present and may increase in the community.

Pathway b Community 2.3 to 2.2

Fire eliminates/reduces the overstory of sagebrush and allows for the understory perennial grasses to increase. Fires may be high severity in this community phase due to the dominance of sagebrush resulting in removal of overstory shrub community. Annual non-native species respond well to fire and may increase post burn.

State 3 Shrub State

This state is characterized by low sagebrush or a sprouting shrub overstory with a Sandberg bluegrass understory. The site has crossed a biotic threshold and site processes are being controlled by shrubs. Sagebrush cover exceeds site concept and may be decadent, reflecting stand maturity and lack of seedling establishment due to competition with mature plants. Bareground has increased and pedestalling of grasses may be excessive. Soil water, nutrient capture, nutrient cycling and soil organic matter are temporally and spatially redistributed.

Community 3.1 Community Phase

Decadent sagebrush dominates the overstory. Rabbitbrush may be a significant component. Deep-rooted perennial bunchgrasses may be present in trace amounts or absent from the community. Sandberg bluegrass, muttongrass and annual non-native species increase. Bare ground is significant. Utah juniper and/or singleleaf pinyon may be present.

Community 3.2 Community Phase

Sandberg's bluegrass dominates the site; annual non-native species may be present but are not dominant. Rabbitbrush may dominate overstory with trace amounts of sagebrush. Perennial forbs may be a significant component of the plant community.

Pathway a

Community 3.1 to 3.2

Fire reduces low sagebrush to trace amounts and allows for sprouting shrubs such as rabbitbrush to dominate. Excessive fall grazing causing mechanical damage to shrubs, and/or brush treatments with minimal soil disturbance would reduce sagebrush and facilitate sprouting shrubs and Sandberg bluegrass.

Pathway a

Community 3.2 to 3.1

Time and lack of disturbance and/or grazing management that favors the establishment and growth of sagebrush allows the shrub component to recover. The establishment of low sagebrush can take many years.

State 4 Tree State

This state is characterized by a dominance of Utah juniper and/or singleleaf pinyon in the overstory. Low sagebrush and perennial bunchgrasses may still be present, but they are no longer controlling site resources. Soil moisture, soi nutrients and soil organic matter distribution and cycling have been spatially and temporally altered.

Community 4.1 Community Phase

Utah juniper and/or singleleaf pinyon dominates the overstory and site resources. Trees are actively growing with noticeable leader growth. Trace amounts of bunchgrass may be found under tree canopies with trace amounts of Sandberg bluegrass, muttongrass and forbs in the interspaces. Sagebrush is stressed and dying. Annual non-native species are present under tree canopies. Bare ground interspaces are large and connected.

Community 4.2 Community Phase

Utah juniper and/or singleleaf pinyon dominate overstory. Low sagebrush is decadent and dying with numerous skeletons present or sagebrush may be missing from the system. Bunchgrasses present in trace amounts and annual non-native species may dominate understory. Herbaceous species may be located primarily under the canopy or near the drip line of trees. Bare ground interspaces are large and connected. Soil movement may be apparent.

Pathway a Community 4.1 to 4.2

Time and lack of disturbance or management action allows for tree cover and density to further increase and trees to out-compete the herbaceous understory species for sunlight and water.

State 5 Eroded State

Abiotic factors including soil redistribution and erosion, soil temperature, soil crusting and sealing, and plant pedestalling are primary drivers of ecological function within this state. Soil moisture, soil nutrients and soil organic matter distribution and cycling are severely altered due to degraded soil surface conditions. Utah juniper and singleleaf pinyon or low sagebrush dominates the overstory and herbaceous species may be present in trace amounts particularly under tree or shrub canopies. Rabbitbrush may be a significant component. Regeneration of trees, shrubs or herbaceous species is not evident.

Community 5.1 Community Phase

Utah juniper and singleleaf pinyon or low sagebrush dominates the overstory and herbaceous species may be present in trace amounts particularly under tree or shrub canopies. Dead sagebrush skeletons are prominent. Pedestalled plants significant. Regeneration of trees, shrubs or herbaceous species is not evident. Annual nonnative species present primarily under tree canopies.

Community 5.2 Community Phase

This phase is characterized by a significant loss of soil from this site. Erosion/soil redistribution is apparent; gullying, rills, sheet erosion and water flow paths are extreme.

Pathway a Community 5.1 to 5.2

Time and lack of management; excessive livestock use.

Transition A State 1 to 2

Trigger: This transition is caused by the introduction of non-native annual plants, such as cheatgrass, mustards, and bur buttercup. Slow variables: Over time the annual non-native species will increase within the community. Threshold: Any amount of introduced non-native species causes an immediate decrease in the resilience of the site. Annual non-native species cannot be easily removed from the system and have the potential to significantly alter disturbance regimes from their historic range of variation.

Transition A State 2 to 3

Trigger: To Community Phase 3.1: Inappropriate grazing will decrease or eliminate deep rooted perennial bunchgrasses, increase Sandberg bluegrass and favor shrub growth and establishment. To Community Phase 3.2: Severe fire in community phase 2.3 will remove sagebrush overstory, decrease perennial bunchgrasses and enhance Sandberg bluegrass. Slow variables: Long term decrease in deep-rooted perennial grass density. Threshold: Loss of deep-rooted perennial bunchgrasses changes nutrient cycling, nutrient redistribution, and reduces soil organic matter.

Transition B State 2 to 4

Trigger: Time and lack of disturbance or management action allows for Utah juniper and/or singleleaf pinyon to dominate. This may be coupled with grazing management that favors tree establishment by reducing understory herbaceous competition for site resources Feedbacks and ecological processes: Trees increasingly dominate use of soil water resulting in decreasing herbaceous and shrub production and decreasing organic matter inputs, contributing to reductions in soil water availability to grasses and shrubs and increased soil erodibility. Slow variables: Over time the abundance and size of trees will increase. Threshold: Trees dominate ecological processes and number of shrub skeletons exceed number of live shrubs. Minimal recruitment of new shrub cohorts.

Transition A State 3 to 4

Trigger: Absence of disturbance over time allows for Utah juniper or singleleaf pinyon dominance. Feedbacks and ecological processes: Trees increasingly dominate use of soil water resulting in decreasing herbaceous and shrub production and decreasing organic matter inputs, contributing to reductions in soil water availability to grasses and shrubs and increased soil erodibility. Slow variables: Long-term increase in juniper and/or singleleaf pinyon density. Threshold: Trees overtop low sagebrush and out-compete shrubs for water and sunlight. Shrub skeletons exceed

live shrubs in number. There is minimal recruitment of new shrub cohorts.

Transition B State 3 to 5

Trigger: Inappropriate grazing management causing a removal of perennial bunchgrasses and a disruption of the soil surface would increase soil erosion. Catastrophic fire followed by wind or rain events. Soil disturbing treatments such as a plowing or other mechanical shrub removal treatments. Slow variable: Bare ground interspaces large and connected; water flow paths long and continuous, understory is sparse, pedestalling of plants significant. Threshold: Soil redistribution and erosion is significant and linked to vegetation mortality evidenced by pedestalling and burying of herbaceous species and / or lack of recruitment in the interspaces.

Transition A State 4 to 5

Trigger: Time and lack of disturbance or management allows for trees to out-compete remaining herbaceous understory; summer convection storm may initiate soil erosion event. Slow variables: Bare ground interspaces large and connected; water flow paths long and continuous; understory sparse. Threshold: Soil redistribution and erosion is significant and linked to vegetation mortality evidenced by pedestalling and burying of herbaceous species and / or lack of recruitment in the interspaces.

Additional community tables

Table 5. Community 1.1 plant community composition

Group	Common Name	Symbol	Scientific Name	Annual Production (Kg/Hectare)	Foliar Cover (%)
Grass	/Grasslike	_			
1	Primary Perennial G	asses		215–437	
	bluebunch wheatgrass	PSSPS	Pseudoroegneria spicata ssp. spicata	135–269	-
	muttongrass	POFE	Poa fendleriana	67–135	-
2	Secondary Perennia	Grasses		13–54	
	Indian ricegrass	ACHY	Achnatherum hymenoides	3–13	-
	squirreltail	ELEL5	Elymus elymoides	3–13	-
	thickspike wheatgrass	ELLAL	Elymus lanceolatus ssp. lanceolatus	3–13	1
	Sandberg bluegrass	POSE	Poa secunda	3–13	-
Forb	-	. .		•	
3	Perennial			47–135	
	barestem biscuitroot	LONU2	Lomatium nudicaule	13–34	-
	phlox	PHLOX	Phlox	3–13	-
	ragwort	SENEC	Senecio	3–13	-
	milkvetch	ASTRA	Astragalus	3–13	-
	hawksbeard	CREPI	Crepis	3–13	-
	fleabane	ERIGE2	Erigeron	3–13	-
	buckwheat	ERIOG	Eriogonum	3–13	_
Shrub	/Vine				
4	Primary Shrubs			183–303	
	little sagebrush	ARAR8	Artemisia arbuscula	168–235	_
	antelope bitterbrush	PUTR2	Purshia tridentata	13–34	_
	Utah serviceberry	AMUT	Amelanchier utahensis	1–34	_
5	Secondary Shrubs			27–40	
	yellow rabbitbrush	CHVI8	Chrysothamnus viscidiflorus	3–20	_
	snowberry	SYMPH	Symphoricarpos	3–20	_
Tree			-		
6	Evergreen			7–27	
	Utah juniper	JUOS	Juniperus osteosperma	3–13	_
	singleleaf pinyon	PIMO	Pinus monophylla	3–13	_

Animal community

Livestock Interpretations:

This site is suitable for livestock grazing. Considerations for grazing management including timing, intensity and duration of grazing. Targeted grazing could be used to decrease the density of non-natives.

Bunchgrasses, in general, best tolerate light grazing after seed formation. Britton et al. (1990) observed the effects of clipping rate on basal area of 5 bunchgrasses in eastern Oregon, and found grazing from August to October (after seed set) has the least impact. Heavy grazing during the growing season will reduce perennial bunchgrasses and increase sagebrush. Abusive grazing by cattle or horses will likely increase low sagebrush, rabbitbrush and some forbs such as arrowleaf balsamroot. Annual non-native weedy species such as cheatgrass and mustards, and potentially medusahead, may invade.

Bluebunch wheatgrass is moderately grazing tolerant and is very sensitive to defoliation during the active growth period (Blaisdell and Pechanec 1949, Laycock 1967, Anderson and Scherzinger 1975, Britton et al. 1990). Herbage

and flower stalk production was reduced with clipping at all times during the growing season; however, clipping was most harmful during the boot stage (Blaisdell and Pechanec 1949). Tiller production and growth of bluebunch was greatly reduced when clipping was coupled with drought (Busso and Richards 1995). Mueggler (1975) estimated that low vigor bluebunch wheatgrass may need up to 8 years rest to recover. Although an important forage species, it is not always the preferred species by livestock and wildlife.

Muttongrass is important range forage in the central Rocky Mountains, New Mexico and Arizona and is a component on this ecological site. It is a highly nutritious grass that is known for fattening sheep. Like sandbergs bluegrass, muttongrass greens up in early spring before many of the other perennial bunchgrasses, and is highly palatable to all classes of livestock as well as good forage to wildlife such as deer and elk (Dayton 1937). In a study by Currie et al. (1977) in a ponderosa pine forest deer preferred muttongrass which comprised up to 18% of their diet.

Reduced bunchgrass vigor or density provides an opportunity for Sandberg bluegrass expansion and/or cheatgrass and other invasive species to occupy interspaces. Sandberg bluegrass increases under grazing pressure (Tisdale and Hironaka 1981) and is capable of co-existing with cheatgrass or other weedy species. Depending on the season of use, the grazer and site conditions, either Sandberg bluegrass or cheatgrass may become the dominant understory with inappropriate grazing management.

Domestic sheep and, to a much lesser degree, cattle consume low sagebrush, particularly during the spring, fall, and winter (Sheehy and Winward 1981). Heavy dormant season grazing by sheep will reduce sagebrush cover and increase grass production (Laycock 1967). Severe trampling damage to supersaturated soils could occur if sites are used in early spring when there is abundant snowmelt. However, trampling damage is likely to be localized in nature around areas where livestock or feral horses congregate. Trampling damage, particularly from cattle or horses, in low sagebrush habitat types is greatest when high clay content soils are wet. In drier areas with more gravelly soils, no serious trampling damage occurs, even when the soils are wet (Hironaka et al. 1983).

Antelope bitterbrush a minor component on this site is a critical browse species for mule deer, antelope and elk and is often utilized heavily by domestic livestock (Wood 1995). Grazing tolerance is dependent on site conditions (Garrison 1953) and the shrub can be severely hedged during the dormant season for grasses and forbs.

Wildlife Interpretations:

This ecological site provides valuable browse plants for wildlife (Clements and Young 1997, Sheehy and Winward 1981, Ngugi et al. 1992,). The ability of low sagebrush to grow on exposed sites provides important cover and feed for wintering animals. In other areas, low sagebrush may be used preferentially in winter when shorter grasses are buried by snow (Meuggler and Stewart 1980). Low sagebrush is considered valuable browse in the spring, fall and winter months for wildlife. In other areas, low sagebrush may be used preferentially in winter when shorter grasses are buried by snow (Meuggler and Stewart 1980).

The ability of low sagebrush to grow on exposed sites provides important cover and feed for wintering animals. In a study by Barnett and Crawford (1994), low sagebrush-bluebunch wheatgrass community was used during the prelaying season of sagegrouse hens, sagebrush composed 50 to 80% of the diet by dry weight. Pronghorn antelope commonly use low sagebrush ranges throughout the summer months (Kindschy et al. 1982) and deer make heavy use of low sagebrush community types in early spring (Urness 1965).

Pygmy rabbits (Brachylagus idahoensis), a threatened species of conservation concern throughout Nevada often burrow where low sagebrush mixes with mountain big sagebrush. Low sagebrush is an important shrub for pygmy rabbits and other sagebrush obligate species (Oregon Conservation Strategy, 2006). In southwest Idaho, Oregon, Montana and Nevada, pygmy rabbits will burrow where the big sagebrush form islands within the low sagebrush matrix (Keinath and McGee 2004). Sage grouse (Centrocercus urophasianus), another threatened species of conservation concern and sagebrush obligate species, feeds almost exclusively on leaves of sagebrush. Although big sagebrush dominates the diet in most portions of the range, sage grouse inhabit low sagebrush varieties will be consumed depending on availability (Connelly et al. 2000). Other bird species, gray flycatcher (Empidonax wrightii), horned lark (Eremophila alpestris), vesper sparrow (Pooecetes gramineus) and western meadowlark (Sturnella neglecta), use low sagebrush, as it provides intermediate cover (Holmes and Alman Saab and Marks. 1992). Several reptiles and amphibians are distributed throughout the sagebrush steppe in the west in Nevada, where low sagebrush is known to grow (Bernard and Brown 1977). Reptile species including: eastern racers (Coluber constrictor), ringneck snakes (Diadophis punctatus), night snakes (Hypsiglena torquata), Sonoran mountain kingsnakes (Lampropeltis pyromelana), striped whipsnakes (Masticophis taeniatus), gopher snakes (Pituophis catenifer), long-nosed snakes (Rhinocheilus lecontei), wandering gartersnakes (Thamnophis elegans vagrans), Great Basin rattlesnakes (Crotalus oreganus lutosus), Great Basin collared lizard (Crotaphytus bicinctores), longnosed leopard lizard (Gambelia wislizenii), short-horned lizard (Phrynosoma hernandesi), desert-horned lizard (Phrynosoma platyrhinos), sagebrush lizards (Sceloporus graciosus), western fence lizards (Sceloporus occidentalis), northern side-blotched lizards (Uta stansburiana nevadaensis), western skinks (Plestiodon

skiltonianus), and Great Basin whiptails (Aspidoscelis tigris tigris) occur in areas where sagebrush is dominant. Similarly, amphibians such as: western toads (Anaxyrus boreas), Woodhouse's toads (Anaxyrus woodhousii), northern leopard frogs (Lithobates pipiens), Columbia spotted frogs (Rana luteiventris), bullfrogs (Lithobates catesbeianus), and Great Basin spadefoots (Spea intermontana) also occur throughout the Great Basin in areas sagebrush species are dominant (Hamilton 2004). Studies have not determined if reptiles and amphibians prefer certain species of sagebrush; however, researchers agree that maintaining habitat where basin big sagebrush and reptiles and amphibians occur is important. In fact, wildlife biologists have noticed declines in reptiles where sagebrush steppe habitat has been seeded with introduced grasses (West 1999 and ref. therein). Changes in plant community composition caused by fire frequency, and other threats associated with this ecological site could affect the distribution and presence of wildlife species.

Further threats to low sagebrush dominant habitats include the Aroga moth. The Aroga moth is a sagebrush defoliator that threatens to infest extensive sagebrush stands throughout Great Basin rangelands (Bentz et al. 2008). Climate is generally believed to play a key role in determining the timing of insect outbreaks on Great Basin rangelands, but the exact mechanisms are not well understood (Bentz et al. 2008). These factors make management difficult; therefore, additional knowledge is needed to identify the susceptibility of landscapes altered by climate change and humans, as well as optimal strategies for management of host plants and insects populations residing in these changed systems (Bentz et al. 2008). This information will help managers and land owners alike manage the range for optimal productivity.

Hydrological functions

Permeability is very slow. Runoff is high to very high. Rills are rare. A few rills can be expected on steeper slopes in areas subjected to summer convection storms or rapid spring snowmelt. Water flow patterns are rare but can be expected in areas subjected to summer convection storms or rapid snowmelt usually on steeper slopes. Pedestals are rare. Occurrence is usually limited to areas of water flow patterns. Frost heaving of shallow rooted plants should not be considered a "normal" condition. Perennial herbaceous plants, especially deep-rooted bunchgrasses (bluebunch wheatgrass), slow runoff and increase infiltration. Shrub canopy and associated litter break raindrop impact and provide opportunity for snow catch and accumulation on site.

Recreational uses

Aesthetic value is derived from the diverse floral and faunal composition and the colorful flowering of wild flowers and shrubs during the spring and early summer. This site offers rewarding opportunities to photographers and for nature study. This site is used for camping and hiking and has potential for upland and big game hunting.

Other products

Utah serviceberry fruits were used by Native Americans and early European explorers in North America for food and medicine.

Other information

Low sagebrush can be successfully transplanted or seeded in restoration. Antelope bitterbrush has been used extensively in land reclamation. Antelope bitterbrush enhances succession by retaining soil and depositing organic material and in some habitats and with some ecotypes, by fixing nitrogen. Utah serviceberry has been used to revegetate big game winter range and for surface stabilization. It grows slowly from seed and therefore transplanting may be more successful than seeding for revegetation projects.

Type locality

Location 1: White Pine County, NV	
Township/Range/Section	T17N R58E S5
Latitude	39° 22′ 4″
Longitude	115° 28′ 4″

Other references

Anderson, E. W. and R. J. Scherzinger. 1975. Improving quality of winter forage for elk by cattle grazing. Journal of Range Management: 120-125.

Barnett, J. K. and J. A. Crawford. 1994. Pre-laying nutrition of sage grouse hens in Oregon. Journal of Range Management 47:114-118.

Barney, M. A. and N. C. Frischknecht. 1974. Vegetation Changes following Fire in the Pinyon-Juniper Type of West-Central Utah. Journal of Range Management 27:91-96.

Bates, J. D., T. Svejcar, R. F. Miller, and R. A. Angell. 2006. The effects of precipitation timing on sagebrush steppe vegetation. Journal of Arid Environments 64:670-697.

Beardall, L. E. and V. E. Sylvester. 1976. Spring burning of removal of sagebrush competition in Nevada. Pages 539-547 in Proceedings- Tall Timbers fire ecology conference and fire and land management symposium. Tall Timbers Research Station.

Blaisdell, J. P., R. B. Murray, and E. D. McArthur. 1982. Managing intermountain rangelands-sagebrush-grass ranges. Gen. Tech. Rep. INT-134. U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, Ogden, UT.

Blaisdell, J. P. and W. F. Mueggler. 1956. Sprouting of Bitterbrush (Purshia Tridentata) Following Burning or Top Removal. Ecology 37:365-370.

Blaisdell, J. P. and J. F. Pechanec. 1949. Effects of Herbage Removal at Various Dates on Vigor of Bluebunch Wheatgrass and Arrowleaf Balsamroot. Ecology 30:298-305.

Bradley, A. F., N. V. Noste, and W. C. Fischer. 1992. Fire ecology of forests and woodlands in Utah. Gen. Tech. Rep. INT-287. U.S. Department of Agriculture, Forest Service, Intermountain Research Station.

Britton, C. M., G. R. McPherson, and F. A. Sneva. 1990. Effects of burning and clipping on five bunchgrasses in eastern Oregon. Great Basin Naturalist 50:115-120.

Bunting, S. 1994. Effects of Fire on Juniper woodland ecosystems in the great basin.in Proceedings--Ecology and Management of Annual Rangelands. USDA: FS Intermountain Research Station.

Busso, C. A. and J. H. Richards. 1995. Drought and clipping effects on tiller demography and growth of two tussock grasses in Utah. Journal of Arid Environments 29:239-251.

Caudle, D., J. Dibenedetto, M. Karl, H. Sanchez, and C. Talbot. 2013. Interagency ecological site handbook for rangelands.

Chambers, J., B. Bradley, C. Brown, C. D'Antonio, M. Germino, J. Grace, S. Hardegree, R. Miller, and D. Pyke. 2013. Resilience to Stress and Disturbance, and Resistance to Bromus tectorum L. Invasion in Cold Desert Shrublands of Western North America. Ecosystems:1-16.

Chambers, J. C., B. A. Roundy, R. R. Blank, S. E. Meyer, and A. Whittaker. 2007. What makes great basin sagebrush ecosystems invasible by Bromus tectorum? Ecological Monographs 77:117-145.

Clark, R. G., M. B. Carlton, and F. A. Sneva. 1982. Mortality of Bitterbrush after Burning and Clipping in Eastern Oregon. Journal of Range Management 35:711-714.

Clements, C. D. and J. A. Young. 2002. Restoring Antelope Bitterbrush. Rangelands 24:3-6.

Comstock, J. P. and J. R. Ehleringer. 1992. Plant adaptation in the Great Basin and Colorado plateau. Western North American Naturalist 52:195-215.

Conrad, C. E. and C. E. Poulton. 1966. Effect of a wildfire on Idaho fescue and bluebunch wheatgrass. Journal of Range Management:138-141.

Currie, P. O., D. W. Reichert, J. C. Malechek, and O. C. Wallmo. 1977. Forage Selection Comparisons for Mule Deer and Cattle under Managed Ponderosa Pine. Journal of Range Management 30:352-356.

Daubenmire, R. 1970. Steppe vegetation of Washington.131 pp.

Daubenmire, R. 1975. Plant succession on abandoned fields, and fire influences in a steppe area in southeastern Washington. Northwest Science 49:36-48.

Dayton, W. 1937. Range plant handbook. USDA, Forest Service. Bull.

Dobrowolski, J.P., Caldwell, M.M. and Richards, J.H. 1990. Basin hydrology and plant root systems. In: Plant Biology of the Basin and Range. Springer-Verlag Pub., New York, NY.

Eckert, R. E., Jr. and J. S. Spencer. 1987. Growth and reproduction of grasses heavily grazed under rest-rotation management. Journal of Range Management 40:156-159.

Evans, R. A. and J. A. Young. 1978. Effectiveness of Rehabilitation Practices following Wildfire in a Degraded Big Sagebrush-Downy Brome Community. Journal of Range Management 31:185-188.

Everett, R. L. and K. Ward. 1984. Early plant succession on pinyon-juniper controlled burns. Northwest Science 58:57-68.

Fire Effects Information System (Online; http://www.fs.fed.us/database/feis/plants/).

Furniss, M. M. and W. F. Barr. 1975. Insects affecting important native shrubs of the northwestern United States. US Intermountain Forest And Range Experiment Station. USDA Forest Service General Technical Report INT INT-19.

Ganskopp, D. 1988. Defoliation of Thurber Needlegrass: Herbage and Root Responses. Journal of Range Management 41:472-476.

Garrison, G. A. 1953. Effects of Clipping on Some Range Shrubs. Journal of Range Management 6:309-317.

Hironaka, M., M. A. Fosberg, and A. H. Winward. 1983. Sagebrush-grass habitat types of southern Idaho. Bulletin Number 35. University of Idaho, Forest, Wildlife and Range Experiment Station, Moscow, ID.

Houghton, J.G., C.M. Sakamoto, and R.O. Gifford. 1975. Nevada's Weather and Climate, Special Publication 2. Nevada Bureau of Mines and Geology, Mackay School of Mines, University of Nevada, Reno, NV.

Jensen, M.E. Interpretation of environmental gradients which influence sagebrush community distribution in northeastern Nevada. J. of Range Management 43(2):161-166.

Kerns, B. K., W. G. Thies, and C. G. Niwa. 2006. Season and severity of prescribed burn in ponderosa pine forests: implications for understory native and exotic plants. Ecoscience 13:44-55.

Kindschy, R. R., C. S. Undstrom, and J. D. Yoakum. 1982. Wildlife habitats in managed rangelands - the Great Basin of southeastern Oregon: pronghorns. Gen. Tech. Rep. PNW-GTR-145. Portland, OR.

Kitchen, S. G. and E. D. McArthur. 2007. Big and black sagebrush landscapes. Pages 73-95 in Fire ecology and mangement of the major ecosystems of southern Utah. Gen. Teck. Rep. RMRMS-GTR-202. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, CO.

Koniak, S. 1985. Succession in pinyon-juniper woodlands following wildfire in the Great Basin. The Great Basin

Naturalist 45:556-566.

Laycock, W. A. 1967. How heavy grazing and protection affect sagebrush-grass ranges. Journal of Range Management 20:206-213.

Miller, R. F. and R. J. Tausch. 2000. The role of fire in pinyon and juniper woodlands: a descriptive analysis. Pages 15-30 in Proceedings of the invasive species workshop: the role of fire in the control and spread of invasive species. Fire conference.

Mueggler, W. F. 1975. Rate and Pattern of Vigor Recovery in Idaho Fescue and Bluebunch Wheatgrass. Journal of Range Management 28:198-204.

Murray, R. 1983. Response of antelope bitterbrush to burning and spraying in southeastern Idaho. Tiedemann, Arthur R.; Johnson, Kendall L., compilers. Research and management of bitterbrush and cliffrose in western North America. General Technical Report INT-152. Ogden, UT: US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station:142-152.

National Oceanic and Atmospheric Administration. 2004. The North American Monsoon. Reports to the Nation. National Weather Service, Climate Prediction Center. Available online: http://www.weather.gov/.

Richards, J. H. and M. M. Caldwell. 1987. Hydraulic lift: Substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia 73:486-489.

Robberecht, R. and G. Defossé. 1995. The relative sensitivity of two bunchgrass species to fire. International Journal of Wildland Fire 5:127-134.

Sheehy, D. P. and A. H. Winward. 1981. Relative Palatability of Seven Artemisia Taxa to Mule Deer and Sheep. Journal of Range Management 34:397-399.

Stringham, T.K., P. Novak-Echenique, P. Blackburn, C. Coombs, D. Snyder and A. Wartgow. 2015. Final Report for USDA Ecological Site Description State-and-Transition Models, Major Land Resource Area 28A and 28B Nevada. University of Nevada Reno, Nevada Agricultural Experiment Station Research Report 2015-01. p. 1524.

Tausch, R. J. 1999. Historic pinyon and juniper woodland development. Proceedings: ecology and management of pinyon–juniper communities within the Interior West. Ogden, UT, USA: US Department of Agriculture, Forest Service, Rocky Mountain Research Station, RMRS-P-9:12-19.

Tausch, R. J. and N. E. West. 1988. Differential Establishment of Pinyon and Juniper Following Fire. American Midland Naturalist 119:174-184.

Tisdale, E. W. and M. Hironaka. 1981. The sagebrush-grass region: A review of the ecological literature. University of Idaho, Forest, Wildlife and Range Experiment Station.

Uresk, D. W., J. F. Cline, and W. H. Rickard. 1976. Impact of wildfire on three perennial grasses in south-central Washington. Journal of Range Management 29:309-310.

Urness, P. J. 1965. Influence of range improvement practices on composition, production, and utilization of Artemisia deer winter range in central Oregon. Oregon State University.

USDA-NRCS Plants Database (Online; http://www.plants.usda.gov).

Vose, J. M. and A. S. White. 1991. Biomass response mechanisms of understory species the first year after prescribed burning in an Arizona ponderosa-pine community. Forest Ecology and Management 40:175-187.

Wood, M. K., Bruce A. Buchanan, & William Skeet. 1995. Shrub preference and utilization by big game on New Mexico reclaimed mine land. Journal of Range Management 48:431-437.

Wright, H. A. and J. O. Klemmedson. 1965. Effect of Fire on Bunchgrasses of the Sagebrush-Grass Region in

Southern Idaho. Ecology 46:680-688.

Young, R. P. 1983. Fire as a vegetation management tool in rangelands of the intermountain region. Pages 18-31 in Managing intermountain rangelands - improvement of range and wildlife habitats. USDA, Forest Service.

Contributors

RK

T. Stringham/P.Novak-Echenique

E. Hourihan

Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

Author(s)/participant(s)	GK BRACKLEY/P.NOVAK-ECHENIQUE
Contact for lead author	State Rangeland Management Specialist
Date	06/22/2006
Approved by	PNovak-Echenique
Approval date	
Composition (Indicators 10 and 12) based on	Annual Production

Indicators

1.	Number and extent of rills: Rills are rare. A few rills can be expected on steeper slopes in areas subjected to summer
	convection storms or rapid spring snowmelt.

2.	Presence of water flow patterns: Water flow patterns are rare but can be expected in areas subjected to summer
	convection storms or rapid snowmelt usually on steeper slopes. They are typically short (<1m), meandering, and not
	connected

3.	Number and height of erosional pedestals or terracettes:	Pedestals are rare. Occurrence is usually limited to areas
	of water flow patterns. Frost heaving of shallow rooted plants	should not be considered a "normal" condition.

4.	Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not
	bare ground): Bare Ground 20-30%

5. Number of gullies and erosion associated with gullies: None

6.	Extent of wind scoured, blowouts and/or depositional areas: None		
7.	Amount of litter movement (describe size and distance expected to travel): Fine litter (foliage from grasses and annual & perennial forbs) is expected to move the distance of slope length during intense summer convection storms or rapid snowmelt events. Persistent litter (large woody material) will remain in place except during large rainfall events.		
8.	Soil surface (top few mm) resistance to erosion (stability values are averages - most sites will show a range of values): Soil stability values should be 4 to 6 on most soil textures found on this site.		
9.	Soil surface structure and SOM content (include type of structure and A-horizon color and thickness): Surface structure is typically weak, very fine and fine subangular blocky. Soil surface colors are grayish browns and the soils are typified by a mollic epipedon. Surface textures are loams. Organic carbon of the surface 2 to 4 inches is typically 1 to 3 percent dropping off quickly below. Organic matter content can be more or less depending on micro-topography.		
0.	Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff: Perennial herbaceous plants, especially deep-rooted bunchgrasses (bluebunch wheatgrass), slow runoff and increase infiltration. Shrub canopy and associated litter break raindrop impact and provide opportunity for snow catch and accumulation on site.		
1.	. Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site): Compacted layers are none. Subsoil argillic horizons or subangular blocky structure are not to be interpreted as compacted.		
	structure are not to be interpreted as compacted.		
2.	Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or liv foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):		
2.	Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or liv		
2.	Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to): Dominant: Reference State: Deep-rooted, cool season, perennial bunchgrasses >> low shrubs (low sagebrush). (By		
2.	Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to): Dominant: Reference State: Deep-rooted, cool season, perennial bunchgrasses >> low shrubs (low sagebrush). (By above ground production) Sub-dominant: Associated shrubs = deep-rooted, cool season, perennial forbs > shallow-rooted and/or rhizomatous perennial grasses = fibrous, shallow-rooted, cool season, perennial forbs = native annual forbs. (By above ground		

much as 15% of total woody canopy; some of the mature bunchgrasses (<5%) have dead centers.

Average percent litter cover (%) and depth (in): Between plant interspaces (± 20%) and litter depth is ± ¼ inch.	
Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annual-production): For normal or average growing season (through mid-June) ± 600lbs/ac. Favorable years ± 800 lbs/ac and unfavorable years ± 500 lbs/ac.	
Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site: Cheatgrass, Russian thistle and knapweed are invaders on this site. With an extended fire return interval, singleleaf pinyon and Utah juniper will eventually dominate this site.	
Perennial plant reproductive capability: All functional groups should reproduce in average (or normal) and above average growing season years. Reduced growth and reproduction occur during extreme or extended drought periods.	