

Ecological site R041XB219AZ Gypsum Upland 8-12" p.z.

Last updated: 7/28/2020 Accessed: 05/13/2025

General information

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

Figure 1. Mapped extent

Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated.

MLRA notes

Major Land Resource Area (MLRA): 041X-Madrean Archipelago

AZ 41.2 - Chihuahuan - Sonoran Desert Shrubs

Elevations range from 2600 to 4000 feet and precipitation ranges from 8 to 12 inches per year. Vegetation includes mesquite, palo verde, catclaw acacia, soaptree yucca, creosotebush, whitethorn, staghorn cholla, desert saltbush, Mormon tea, burroweed, snakeweed, tobosa, black grama, threeawns, bush muhly, dropseed, and burrograss. The soil temperature regime is thermic and the soil moisture regime is typic aridic. This unit occurs within the Basin and Range Physiographic Province and is characterized by numerous mountain ranges that rise abruptly from broad, plain-like valleys and basins. Igneous and metamorphic rock classes dominate the mountain ranges and sediments filling the basins represent combinations of fluvial, lacustrine, colluvial and alluvial deposits.

Associated sites

F041XB221AZ	Loamy Bottom 8-12" p.z. woodland
R041XB206AZ	Limy Fan 8-12" p.z.
R041XB207AZ	Limy Slopes 8-12" p.z.

Similar sites

R041XB201AZ Breaks 8-12" p.z.

Table 1. Dominant plant species

Tree	Not specified
Shrub	(1) larrea tridentata (2) acacia constricta
Herbaceous	Not specified

Physiographic features

This site occurs in the lowest elevations of the Madrean Basin and Range province in southeastern Arizona. It occurs on fan terraces formed on relict lake bed sediments.

Landforms	(1) Alluvial flat (2) Fan remnant
Flooding frequency	None
Ponding frequency	None
Elevation	792–1,219 m
Slope	1–5%
Aspect	Aspect is not a significant factor

Climatic features

Precipitation ranges from 8-12 inches annually. More than half falls during July-Sep in brief, but often heavy, thunderstorms. The rest of the moisture comes as light rain or snow that falls slowly for a day or more, but rarely lasts more than a day. May and June are normally the driest months. Humidity is generally very low.

Temperatures are mild throughout most of the year. Freezing temperatures are common at night Dec-Feb; brief 0 F may be observed some nights. During June, July & August some days may exceed 100 F.

In years of average or greater winter precipitation, annual grasses and forbs occur abundantly in the interspaces.

Table 3. Representative climatic features

Frost-free period (average)	240 days
Freeze-free period (average)	
Precipitation total (average)	

Influencing water features

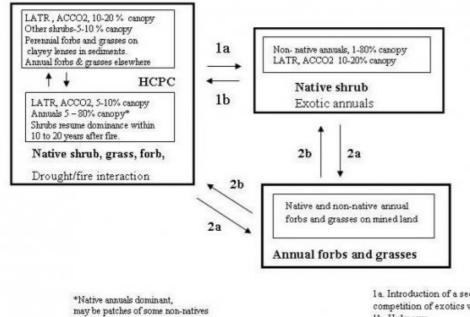
Soil features

These soils are well drained, variable in texture, stratified and high in soluble gypsum (5-30% by volume). They are moderately deep to deep and underlain by gypsum deposits in places. Coarse fragments in the soil profile are usually large gypsum crystals. These soils have formed in relict lacustrine deposits and may be slightly saline and sodic as well. They are not flooded.

Soil series mapped on this site include: SSA-666 Cochise county Northwest part MU's 14 Calcigypsids & Contention, 31 Ugyp, 32 Whitecliff; SSA-671 Cochise county Douglas-Tombstone part MU 35 Crystalgyp.

Table 4. Representative soil features

Surface texture	(1) Silt loam (2) Fine sandy loam (3) Clay
Family particle size	(1) Loamy
Drainage class	Well drained
Permeability class	Moderate to slow
Soil depth	152 cm
Surface fragment cover <=3"	0–20%
Surface fragment cover >3"	0–5%
Available water capacity (0-101.6cm)	10.67–16.76 cm
Calcium carbonate equivalent (0-101.6cm)	0–20%
Electrical conductivity (0-101.6cm)	0–2 mmhos/cm
Sodium adsorption ratio (0-101.6cm)	0–2
Soil reaction (1:1 water) (0-101.6cm)	7.4–8.4
Subsurface fragment volume <=3" (Depth not specified)	0–20%
Subsurface fragment volume >3" (Depth not specified)	0–5%


Ecological dynamics

The plant communities found on an ecological site are naturally variable. Composition and production will vary with yearly conditions, location, aspect and the natural variability of the soils. The Historical Climax Plant Community represents the natural potential plant community found on relict or relatively undisturbed areas of this site. Other plant communities described here represent plant communities that are known to occur when the site is disturbed by factors such as fire, grazing and drought.

Production data provided in this site description is standardized to air dry weight at the end of the summer growing season. The plant communities described in this site description are based on near normal rainfall years. NRCS uses a Similarity Index to compare existing plant communities to the plant communities described here. Similarity index is determined by comparing the production and composition of a plant community to the production and composition described in the site description. To determine similarity index, compare the production (air dry weight) of each species to that shown in the plant community description. For each species, count no more than the maximum amount shown for the species, and for each group, count no more than the amount shown for that group. Divide the resulting total by the total, normal year, production shown in the plant community description. If the rainfall has been significantly above or below normal, use the total production shown for above or below normal years. If the field data is not collected at the end of the summer growing season, then the field data must be corrected to the end of year production before comparing it to the site description. The growth curve can be used as a guide for estimating production at the end of the summer growing season.

The historic native state includes the native plant communities that occur on the site, including the historic climax plant community. This state includes other plant communities that naturally occupy the site following fire, drought, flooding, herbivores and other natural disturbances. The historic climax plant community represents the natural climax community that eventually reoccupies the site with proper management and a return to near normal conditions and/or equilibrium.

State and transition model

CHG - continuous heavy grazing PG/NG - proper grazing, no grazing LATR - creosotebush, ACCO2-whitethorn Introduction of a seed source of non-natives. CHG, Possible competition of exotics with native species of forbs or grasses.
Unknown

2a. Gypsum is strip mined and the resulting level areas become colonized by a mixture of native and non-native annual forbs and grasses.

2b. Unknown, possible seeding of shrubs like LATR and ACCO2

State 1 Historic Climax Plant Community

Community 1.1 Historic Climax Plant Community

This plant community is dominated by creosote bush with lesser amounts of other shrubs like whitethorn acacia. Annual grasses and forbs are an important part of the plant community. Cryptogams are very common on this site, often completely colonizing outcrops of gypsum. The site is extremely susceptible to soil piping and sheet, rill and gully erosion due to high concentrations of soluble gypsum in the surface soil.

Table 5. Annual production by plant type

Plant Type	Low (Kg/Hectare)	Representative Value (Kg/Hectare)	High (Kg/Hectare)
Shrub/Vine	56	168	263
Grass/Grasslike	6	22	95
Forb	1	11	67
Total	63	201	425

Table 6. Soil surface cover

Tree basal cover	0%
Shrub/vine/liana basal cover	1%
Grass/grasslike basal cover	0-1%
Forb basal cover	0-1%
Non-vascular plants	0%

Biological crusts	25-50%
Litter	5-25%
Surface fragments >0.25" and <=3"	0-15%
Surface fragments >3"	0-1%
Bedrock	0%
Water	0%
Bare ground	10-70%

Table 7. Canopy structure (% cover)

Height Above Ground (M)	Tree	Shrub/Vine	Grass/ Grasslike	Forb
<0.15	-	0-1%	0-10%	0-10%
>0.15 <= 0.3	_	0-2%	0-5%	0-10%
>0.3 <= 0.6	_	5-10%	_	0-5%
>0.6 <= 1.4	-	5-10%	-	-
>1.4 <= 4	_	0-2%	_	_
>4 <= 12	-	_	-	_
>12 <= 24	_	_	_	_
>24 <= 37	-	_	-	-
>37	-	_	-	-

State 2 Shrubs, annuals

Community 2.1 Shrubs, annuals

This state occurs where the native shrub cover is still dominant but the herbaceous layer of the plant community is dominated by non-native annual forbs and grasses. These species can include filaree, red brome, mediterranean grass, Malta starthistle and Sahara mustard.

State 3 Annuals

Community 3.1 Annuals

This state occurs where strip mining for gypsum has left areas devoid of shrub cover. Native and non-native annual forbs and grasses dominate the plant community. Large chunks of gypsum crystal litter the surface. Cryptogams can quickly colonize areas of gypsum outcrop.

Transition T1A State 1 to 2

Introduction of a seed source of non-natives, Continuous Heavy Grazing, possible competition of exotics with native species of forbs or grasses.

Transition T1B State 1 to 3 Gypsum is strip mined and the resulting level areas become colonized by a mixture of native and non-native annual forbs and grasses.

Restoration pathway R2A State 2 to 1

Unknown

Transition T2A State 2 to 3

Gypsum is strip mined and the resulting level areas become colonized by a mixture of native and non-native annual forbs and grasses.

Restoration pathway R3A State 3 to 1

Unknown

Restoration pathway R3B State 3 to 2

Unknown

Additional community tables

Table 8. Community 1.1 plant community composition

Group	Common Name	Symbol	Scientific Name	Annual Production (Kg/Hectare)	Foliar Cover (%)
Grass	/Grasslike				
1	Dominant perennial gr	asses		6–28	
	bush muhly	MUPO2	Muhlenbergia porteri	6–17	_
	whiplash pappusgrass	PAVA2	Pappophorum vaginatum	0–11	-
	spike dropseed	SPCO4	Sporobolus contractus	0–11	_
	false Rhodes grass	TRCR9	Trichloris crinita	0–11	_
	Parish's threeawn	ARPUP5	Aristida purpurea var. parishii	0–11	-
	big sacaton	SPWR2	Sporobolus wrightii	0–6	_
	alkali sacaton	SPAI	Sporobolus airoides	0–6	_
2	Misc. perennial grasses			0–11	
	tobosagrass	PLMU3	Pleuraphis mutica	0–6	_
	purple threeawn	ARPU9	Aristida purpurea	0–6	_
	spidergrass	ARTE3	Aristida ternipes	0–6	_
	spidergrass	ARTEG	Aristida ternipes var. gentilis	0–6	_
	low woollygrass	DAPU7	Dasyochloa pulchella	0–2	_
	sand dropseed	SPCR	Sporobolus cryptandrus	0–2	_
	mesa dropseed	SPFL2	Sporobolus flexuosus	0–2	_
	poverty threeawn	ARDI5	Aristida divaricata	0–2	_
	Havard's threeawn	ARHA3	Aristida havardii	0–1	_
	Arizona cottontop	DICA8	Digitaria californica	0–1	_
	nineawn pappusgrass	ENDE	Enneapogon desvauxii	0–1	_

p	plains bristlegrass	SEVU2	Setaria vulpiseta	0–1	_
3 /	Annual grasses			0–56	
r	needle grama	BOAR	Bouteloua aristidoides	0–22	
s	sixweeks grama	BOBA2	Bouteloua barbata	0–22	
F	Rothrock's grama	BORO2	Bouteloua rothrockii	0–11	
s	sixweeks fescue	VUOC	Vulpia octoflora	0–11	
s	sixweeks threeawn	ARAD	Aristida adscensionis	0–6	_
p	prairie threeawn	AROL	Aristida oligantha	0–6	
n	nucronate sprangeltop	LEPAB	Leptochloa panicea ssp. brachiata	0–6	_
с	delicate muhly	MUFR	Muhlenbergia fragilis	0–2	
li	ittleseed muhly	MUMI	Muhlenbergia microsperma	0–2	
E	Bigelow's bluegrass	POBI	Poa bigelovii	0–2	_
A	Arizona signalgrass	URAR	Urochloa arizonica	0–2	_
A	Arizona brome	BRAR4	Bromus arizonicus	0–2	_
c	canyon cupgrass	ERLE7	Eriochloa lemmonii	0–2	_
	desert lovegrass	ERPEM	Eragrostis pectinacea var. miserrima	0–2	_
	ufted lovegrass	ERPEP2	Eragrostis pectinacea var. pectinacea	0–2	_
	Vexican sprangletop	LEFUU	Leptochloa fusca ssp. uninervia	0–1	_
Forb					
4 F	Perennial forbs			1–11	
c	dwarf desertpeony	ACNA2	Acourtia nana	0–6	_
	weakleaf bur ragweed	AMCO3	Ambrosia confertiflora	0–2	
	desert globemallow	SPAM2	Sphaeralcea ambigua	0–2	_
	stinging serpent	CESI	Cevallia sinuata	0–2	_
	whitemargin sandmat	CHAL11	Chamaesyce albomarginata	0–1	
	desert trumpet	ERIN4	Eriogonum inflatum	0–1	_
	San Pedro daisy	LAPO4	Lasianthaea podocephala	0–1	
la	acy tansyaster	MAPIP4	Machaeranthera pinnatifida ssp. pinnatifida var. pinnatifida	0–1	_
С	desert tobacco	NIOB	Nicotiana obtusifolia	0–1	_
C	Coues' cassia	SECO10	Senna covesii	0–1	_
s	silverleaf nightshade	SOEL	Solanum elaeagnifolium	0–1	-
b	prownplume wirelettuce	STPA4	Stephanomeria pauciflora	0–1	_
p	pricklyleaf dogweed	THAC	Thymophylla acerosa	0–1	_
r	ue of the mountains	THTE2	Thamnosma texana	0–1	_
h	nairyseed bahia	BAAB	Bahia absinthifolia	0–1	-
с	desert marigold	BAMU	Baileya multiradiata	0–1	_
b	prownfoot	ACWR5	Acourtia wrightii	0–1	_
t	railing windmills	ALIN	Allionia incarnata	0–1	_
5 4	Annual forbs			0–56	
с	combseed	PECTO	Pectocarya	0–11	_
	nanybristle chinchweed	PEPA2	Pectis papposa	0–11	_
с	desert Indianwheat	PLOV	Plantago ovata	0–11	_
t	latarowa hualawhaat		Eriagonum daflavum	0.11	

miniature	e woollystar	ERDI2	Eriastrum diffusum	0–11	
Gordon's	s bladderpod	LEGO	Lesquerella gordonii	0–6	
shaggyfr pepperw		LELA	Lepidium lasiocarpum	0–6	
intermed pepperw		LEVIM	Lepidium virginicum var. medium	0–6	
coastal b	oird's-foot trefoil	LOSAB	Lotus salsuginosus var. brevivexillus	0–6	
Nuttall's	povertyweed	MONU	Monolepis nuttalliana	0–6	
slender g	goldenweed	MAGR10	Machaeranthera gracilis	0–6	
careless	weed	AMPA	Amaranthus palmeri	0–6	
bristly fic	ldleneck	AMTE3	Amsinckia tessellata	0–6	
wheelsc	ale saltbush	ATEL	Atriplex elegans	0–6	
Coulter's	spiderling	BOCO2	Boerhavia coulteri	0–6	
cryptantl	าล	CRYPT	Cryptantha	0–6	
hairy pra	irie clover	DAMO	Dalea mollis	0–2	
America	n wild carrot	DAPU3	Daucus pusillus	0–2	
western	tansymustard	DEPI	Descurainia pinnata	0–2	
sorrel bu	ckwheat	ERPO4	Eriogonum polycladon	0–2	
Texas st	ork's bill	ERTE13	Erodium texanum	0–2	
Californi	а рорру	ESCAM	Eschscholzia californica ssp. mexicana	0–2	
fringed r	edmaids	CACI2	Calandrinia ciliata	0–2	
white tac	kstem	CAWR	Calycoseris wrightii	0–2	
brittle sp	ineflower	CHBR	Chorizanthe brevicornu	0–2	
hyssople	af sandmat	CHHY3	Chamaesyce hyssopifolia	0–2	
Esteve's	pincushion	CHST	Chaenactis stevioides	0–2	
tanseyle	af tansyaster	MATA2	Machaeranthera tanacetifolia	0–2	
desert ev primrose		OEPR	Oenothera primiveris	0–2	
Florida p	ellitory	PAFL3	Parietaria floridana	0–2	
green ca	rpetweed	MOVE	Mollugo verticillata	0–2	
Coulter's	lupine	LUSP2	Lupinus sparsiflorus	0–2	
hairy des	sertsunflower	GECA2	Geraea canescens	0–2	
star gilia		GIST	Gilia stellata	0–2	
Arizona	рорру	KAGR	Kallstroemia grandiflora	0–2	
phacelia		PHACE	Phacelia	0–2	
woollyhe	ad neststraw	STMI2	Stylocline micropoides	0–2	
woolly tio	destromia	TILA2	Tidestromia lanuginosa	0–2	
Arizona	popcornflower	PLAR	Plagiobothrys arizonicus	0–1	
doublecl	aw	PRPA2	Proboscidea parviflora	0–1	
New Me plumese		RANE	Rafinesquia neomexicana	0–1	
sleepy s	ilene	SIAN2	Silene antirrhina	0–1	
Coulter's	globemallow	SPCO2	Sphaeralcea coulteri	0–1	
common	woolly er	ERLA6	Eriophyllum lanatum	0–1	

	bristly nama	NAHI	Nama hispidum	0–1	_
	glandular threadplant	NEGL	Nemacladus glanduliferus	0–1	_
	exserted Indian paintbrush	CAEXE	Castilleja exserta ssp. exserta	0–1	_
	yellow tackstem	CAPA7	Calycoseris parryi	0–1	_
	hoary bowlesia	BOIN3	Bowlesia incana	0–1	_
	Mexican fireplant	EUHE4	Euphorbia heterophylla	0–1	_
	milkvetch	ASTRA	Astragalus	0–1	_
Shrul	o/Vine	<u>.</u>	•		
6	Dominant shrub			56–224	
	creosote bush	LATR2	Larrea tridentata	56–224	_
7	Miscellaneous shrubs		•	0–17	
	whitethorn acacia	ACCO2	Acacia constricta	0–11	_
	catclaw acacia	ACGR	Acacia greggii	0–1	_
	fourwing saltbush	ATCA2	Atriplex canescens	0–1	_
	cattle saltbush	ATPO	Atriplex polycarpa	0–1	_
	longleaf jointfir	EPTR	Ephedra trifurca	0–1	_
	American tarwort	FLCE	Flourensia cernua	0–1	_
	crown of thorns	KOSP	Koeberlinia spinosa	0–1	_
	water jacket	LYAN	Lycium andersonii	0–1	_
	pale desert-thorn	LYPA	Lycium pallidum	0–1	_
	mariola	PAIN2	Parthenium incanum	0–1	_
	western honey mesquite	PRGLT	Prosopis glandulosa var. torreyana	0–1	_
	soaptree yucca	YUEL	Yucca elata	0–1	_
	lotebush	ZIOB	Ziziphus obtusifolia	0–1	_
8	Half shrubs		•	0–11	
	littleleaf ratany	KRER	Krameria erecta	0–6	_
	whitestem paperflower	PSCO2	Psilostrophe cooperi	0–2	_
	desert zinnia	ZIAC	Zinnia acerosa	0–2	_
	broom snakeweed	GUSA2	Gutierrezia sarothrae	0–2	_
	winterfat	KRLA2	Krascheninnikovia lanata	0–1	_
	rayless goldenhead	ACSP	Acamptopappus sphaerocephalus	0–1	_
	burrobush	AMDU2	Ambrosia dumosa	0–1	_
	threadleaf snakeweed	GUMI	Gutierrezia microcephala	0–1	_
9	Succulents	•	•	0–11	
	devil's cholla	GRKU	Grusonia kunzei	0–3	_
	tulip pricklypear	OPPH	Opuntia phaeacantha	0–2	_
	Christmas cactus	CYLE8	Cylindropuntia leptocaulis	0–2	
	walkingstick cactus	CYSP8	Cylindropuntia spinosior	0–1	
	Engelmann's hedgehog cactus	ECEN	Echinocereus engelmannii	0–1	_
	candy barrelcactus	FEWI	Ferocactus wislizeni	0–1	
	buck-horn cholla	CYAC8	Cylindropuntia acanthocarpa	0–1	_
	nightblooming cereus	PEGR3	Peniocereus greggii	0–1	-

I	· · ·			1	
	cactus apple	OPEN3	Opuntia engelmannii	0–1	

Animal community

This site offers little in the way of livestock forage. It does produce limited forage of annual grasses and forbs in wet winters. High amounts of soluble gypsum in runoff water that is collected in stock ponds may have a laxative effect on livestock.

Wildlife on the site is limited to small mammals and birds and their associated predators.

Hydrological functions

Medium to heavy textured soils make this a moderate producer of runoff. Soluble gypsum can lead to piping and rilling with heavy rainfall.

Recreational uses

Hunting, horseback riding, hiking, four wheeling.

Other products

Gypsum is mined in many areas for material used in making sheet rock.

Type locality

Location 1: Cochise County, AZ			
Township/Range/Section	T17S R20E S1		
General legal description	San Pedro Ranch estates.		

Contributors

Dan Robinett Larry D. Ellicott

Approval

Scott Woodall, 7/28/2020

Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

Author(s)/participant(s)	
Contact for lead author	
Date	05/13/2025
Approved by	Scott Woodall
Approval date	
Composition (Indicators 10 and 12) based on	Annual Production

Indicators

- 1. Number and extent of rills:
- 2. Presence of water flow patterns:
- 3. Number and height of erosional pedestals or terracettes:
- 4. Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground):
- 5. Number of gullies and erosion associated with gullies:
- 6. Extent of wind scoured, blowouts and/or depositional areas:
- 7. Amount of litter movement (describe size and distance expected to travel):
- 8. Soil surface (top few mm) resistance to erosion (stability values are averages most sites will show a range of values):
- 9. Soil surface structure and SOM content (include type of structure and A-horizon color and thickness):
- 10. Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff:
- 11. Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site):
- 12. Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):

Dominant:

Sub-dominant:

Other:

Additional:

- 13. Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence):
- 14. Average percent litter cover (%) and depth (in):
- 15. Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annualproduction):
- 16. Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site:
- 17. Perennial plant reproductive capability: