

Ecological site R041XC315AZ Saline Bottom 12-16" p.z.

Accessed: 05/14/2025

General information

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

Figure 1. Mapped extent

Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated.

MLRA notes

Major Land Resource Area (MLRA): 041X-Madrean Archipelago

AZ 41.3 - Chihuahuan - Sonoran Semidesert Grasslands

Elevations range from 3200 to 5000 feet and precipitation ranges from 12 to 16 inches per year. Vegetation includes mesquite, catclaw acacia, netleaf hackberry, palo verde, false mesquite, range ratany, fourwing saltbush, tarbush, littleleaf sumac, sideoats grama, black grama, plains lovegrass, cane beardgrass, tobosa, vine mesquite, threeawns, Arizona cottontop and bush muhly. The soil temperature regime is thermic and the soil moisture regime is ustic aridic. This unit occurs within the Basin and Range Physiographic Province and is characterized by numerous mountain ranges that rise abruptly from broad, plain-like valleys and basins. Igneous and metamorphic rock classes dominate the mountain ranges and sediments filling the basins represent combinations of fluvial, lacustrine, colluvial and alluvial deposits.

Associated sites

R041XC312AZ	Loamy Bottom 12-16" p.z.
R041XC313AZ	Loamy Upland 12"-16" p.z.
R041XC319AZ	Sandy Loam Upland 12-16" p.z.

Similar sites

R041XB211AZ	Saline Bottom 8-12" p.z.
-------------	--------------------------

Table 1. Dominant plant species

Tree	Not specified
Shrub	Not specified
Herbaceous	(1) sporobolus airoides(2) distichlis spicata

Physiographic features

This site occurs in the middle elevations of the Madrean Basin and Range province in southeastern Arizona. It occurs on the alluvial fans flanking the Willcox playa and flood plains of streams like Whitewater Draw. It benefits on a sporadic basis from extra moisture received as runoff from the contributory watershed areas.

Table 2. Representative physiographic features

Landforms	(1) Alluvial fan(2) Flood plain(3) Flood-plain playa
Flooding duration	Very brief (4 to 48 hours) to brief (2 to 7 days)
Flooding frequency	Occasional to frequent
Ponding duration	Very brief (4 to 48 hours) to brief (2 to 7 days)
Ponding frequency	Rare to occasional
Elevation	1,219–1,372 m
Slope	0–3%
Aspect	Aspect is not a significant factor

Climatic features

Precipitation in this common resource area ranges from 12-16 inches yearly in the eastern part with elevations from 3600-5000 feet, and 13-17 inches in the western part where elevations are 3300-4500 feet. Winter-Summer rainfall ratios are 40-60% in the west and 30-70% in the east. Summer rains fall July-September, originate in the Gulf of Mexico and are convective, usually brief, intense thunderstorms. Cool season moisture tends to be frontal, originates in the Pacific and Gulf of California, and falls in widespread storms with long duration and low intensity. Snow rarely lasts more than one day. May and June are the driest months of the year. Humidity is generally very low.

Temperatures are mild. Freezing temperatures are common at night from December-April; however temperatures during the day are frequently above 50 F. Occasionally in December-February, brief 0 F temperatures may be experienced some nights. During June, July and August, some days may exceed 100 F.

Cool season plants start growth in early spring and mature in early summer. Warm season plants take advantage of summer rains and are growing and nutritious July-September. Warm season grasses may remain green throughout the year.

Table 3. Representative climatic features

Frost-free period (average)	220 days
Freeze-free period (average)	0 days
Precipitation total (average)	406 mm

Influencing water features

There are no water features on this site.

Soil features

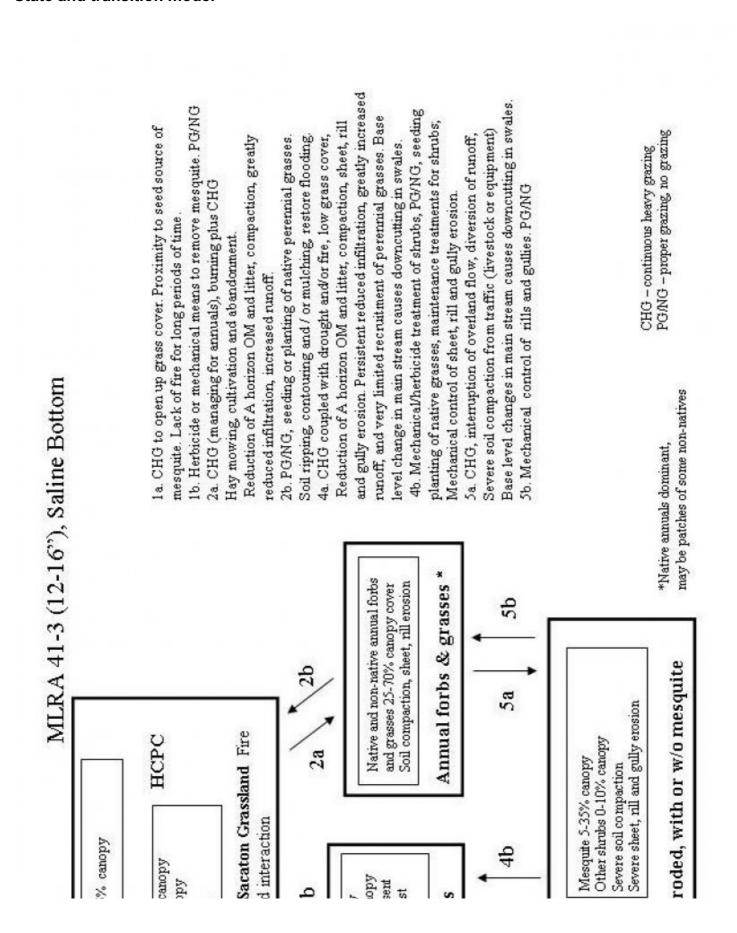
These soils are of various depth and textures. They have all formed in strongly saline and/or alkaline, basin floor or stream alluvium. Plant-soil moisture relationships are fair to poor due to infrequent flooding.

Soils mapped on this site include: SSA-665 Willcox area MU's Cc, Ce & Cg Cogswell, Ct Crot, Du Duncan, Dv Duncan variant, Go Gothard, St Stewart; SSA-671 Cochise county Douglas-Tombstone part MU's 29 Chorro Doubleabode & Gothard, 30 Chorro, 31 Cogswell C saline-sodic, 48 Doubleabode SL, 51 Gothard, 55 Elfrida CL saline-sodic, 66 Forrest CL saline-sodic, 69 Forrest SiL saline-sodic, 73 Gothard L, 74 Gothard SL, 80 Guest SiCL saline-sodic, 82 Guest SiC saline-sodic, 83 Cogswell saline-sodic & Guest saline-sodic, 104 Major SiL.

Table 4. Representative soil features

Family particle size	(1) Clayey
Drainage class	Somewhat poorly drained to well drained
Permeability class	Moderately slow to very slow
Soil depth	51–152 cm
Surface fragment cover <=3"	0–5%
Surface fragment cover >3"	0–1%
Available water capacity (0-101.6cm)	4.06–20.32 cm
Calcium carbonate equivalent (0-101.6cm)	5–50%
Electrical conductivity (0-101.6cm)	4–20 mmhos/cm
Sodium adsorption ratio (0-101.6cm)	5–30
Soil reaction (1:1 water) (0-101.6cm)	7.9–9
Subsurface fragment volume <=3" (Depth not specified)	0–5%
Subsurface fragment volume >3" (Depth not specified)	0–1%

Ecological dynamics


The plant communities found on an ecological site are naturally variable. Composition and production will vary with yearly conditions, location, aspect, and the natural variability of the soils. The Historical Climax Plant Community represents the natural potential plant communities found on relict or relatively undisturbed sites. Other plant communities described here represent plant communities that are known to occur when the site is disturbed by factors such as fire, grazing, or drought.

Production data provided in this site description is standardized to air dry weight at the end of the summer growing season. The plant communities described in this site description are based on near normal rainfall years.

NRCS uses a Similarity Index to compare existing plant communities to the plant communities described here. Similarity index is determined by comparing the production and composition of a plant community to the production of a plant community described in this site description. To determine Similarity Index, compare the production (air dry weight) of each species to that shown in the plant community description. For each species, count no more than

the maximum amount shown for the species, and for each group, count no more than the maximum amount shown for the group. Divide the resulting total by the total normal year production shown in the plant community description. If rainfall has been significantly above or below normal, use the total production shown for above or below normal years. If field data is not collected at the end of the summer growing season, then the field data must be corrected to the end of the year production before comparing it to the site description. The growth curve can be used as a guide for estimating production at the end of the summer growing season.

State and transition model

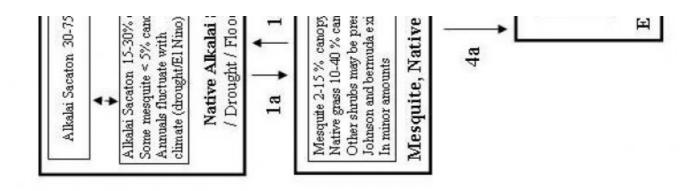


Figure 4. State and Transition, Saline Bottom 12-16" p.z.

State 1 Historic Climax Plant Community

Community 1.1 Historic Climax Plant Community

The potential plant community is dominated by a warm perennial grass; alkalai sacaton. Scattered trees give the site a savannah appearance. Several species of shrubs and perennial and annual forbs are unique to this site. This site is not flooded on a regular basis. Production will vary from what rainfall can produce in one year, to several times that when the site floods in another year. In large areas of this site there will be places where water concentrates and larger areas where runoff occurs. Flooding in "El Nino" years will be widespread and of long duration. As the plant community deteriorates from continuous heavy grazing and/or repeated burning alkalai sacaton can decrease in cover. Mesquite can increase to densities of 20-30 percent canopy without a noticeable decline in grass under-story. Tree size varies with soil texture and depth. Areas of the site flanking the Willcox playa are not subject to gully erosion as base level is controlled by the closed drainage system. However, areas which flank stream floodplains are subject to severe gully erosion if the base level of the stream is lowered and the grass cover is depleted by improper management. Natural fire was a feature of this and helped maintain the shrub free aspect of the potential plant community.

Table 5. Annual production by plant type

Plant Type	Low (Kg/Hectare)	Representative Value (Kg/Hectare)	High (Kg/Hectare)
Grass/Grasslike	455	1121	1961
Forb	7	34	140
Tree	6	11	112
Shrub/Vine	6	22	106
Total	474	1188	2319

Table 6. Soil surface cover

Tree basal cover	0-1%
Shrub/vine/liana basal cover	0-1%
Grass/grasslike basal cover	10-30%
Forb basal cover	0-1%
Non-vascular plants	0%
Biological crusts	1-10%
Litter	10-50%
Surface fragments >0.25" and <=3"	0-1%
Surface fragments >3"	0%
Bedrock	0%

Water	0%
Bare ground	5-60%

Table 7. Canopy structure (% cover)

Height Above Ground (M)	Tree	Shrub/Vine	Grass/ Grasslike	Forb
<0.15	_	-	0-5%	0-5%
>0.15 <= 0.3	_	-	1-10%	0-5%
>0.3 <= 0.6	_	0-1%	15-50%	0-5%
>0.6 <= 1.4	_	0-2%	1-10%	0-1%
>1.4 <= 4	0-1%	0-1%	-	_
>4 <= 12	0-1%	-	-	_
>12 <= 24	_	-	-	_
>24 <= 37	_	_	_	_
>37	_	-	_	_

Figure 6. Plant community growth curve (percent production by month). AZ4134, 41.3 12-16" p.z. other sites. Growth begins in the spring, semi-dormancy occurs during the May through June drought, most growth occurs during the summer rains..

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	0	5	10	0	0	30	35	15	5	0	0

State 2 Mesquite, native grass

Community 2.1 Mesquite, native grass

Mesquite increases in the absence of fire for long periods of time. Alkalai sacaton can maintain good cover with up to 25% canopy of mesquite in occasionally flooded situations.

State 3 Annual grasses and forbs

Community 3.1 Annual grasses and forbs

This state occurs where the native plant community has been plowed and the site brought under cultivation (irrigated agriculture) and subsequently abandoned. Native and non-native annual forbs and grasses dominate the plant community. Shrubs like desert broom, jimmyweed and burroweed can be present.

State 4 Eroded, w/wo mesquite

Community 4.1 Eroded, w/wo mesquite

This state occurs where the site has been depleted of grass cover either due to cultivation or due to the interactions of fire, drought and continuous grazing. Base level changes of associated stream systems will cause gulling of the site in this condition. Areas of this state around the Willcox playa will not have gullies due to the base level control of

the playa, but will have severe sheet and rill erosion due to lack of plant cover, soil compaction and trailing. This state can have moderate to high amounts of mesquite present. Erosion networks cause large amounts of water to be rapidly drained from the site.

Additional community tables

Table 8. Community 1.1 plant community composition

Group	Common Name	Symbol	Scientific Name	Annual Production (Kg/Hectare)	Foliar Cover (%)
Grass	/Grasslike			•	
1	Dominant perennial gr	448–1681			
	alkali sacaton	SPAI	Sporobolus airoides	448–1681	_
2	Miscellaneous perenn	6–168			
	big sacaton	SPWR2	Sporobolus wrightii	0–84	_
	false Rhodes grass	TRCR9	Trichloris crinita	0–56	_
	saltgrass	DISP	Distichlis spicata	1–56	_
	vine mesquite	PAOB	Panicum obtusum	0–34	_
	scratchgrass	MUAS	Muhlenbergia asperifolia	0–28	_
	creeping muhly	MURE	Muhlenbergia repens	0–28	_
	spidergrass	ARTE3	Aristida ternipes	0–17	_
	spidergrass	ARTEG	Aristida ternipes var. gentilis	0–17	_
	blue grama	BOGR2	Bouteloua gracilis	0–17	_
	tobosagrass	PLMU3	Pleuraphis mutica	0–17	_
	hairy grama	BOHI2	Bouteloua hirsuta	0–11	_
	Rothrock's grama	BORO2	Bouteloua rothrockii	0–11	_
	knotgrass	PADI6	Paspalum distichum	0–11	_
	sedge	CAREX	Carex	0–6	_
	flatsedge	CYPER	Cyperus	0–6	_
	Parish's threeawn	ARPUP5	Aristida purpurea var. parishii	0–6	_
	burrograss	SCBR2	Scleropogon brevifolius	0–6	_
	plains bristlegrass	SEVU2	Setaria vulpiseta	0–6	_
	spike dropseed	SPCO4	Sporobolus contractus	0–6	_
	sand dropseed	SPCR	Sporobolus cryptandrus	0–6	_
3	Annual grasses			1–112	
	prairie threeawn	AROL	Aristida oligantha	1–28	_
	feather fingergrass	CHVI4	Chloris virgata	1–28	_
	tapertip cupgrass	ERACA	Eriochloa acuminata var. acuminata	0–17	_
	needle grama	BOAR	Bouteloua aristidoides	0–17	_
	mucronate sprangletop	LEPA6	Leptochloa panicea	0–17	_
	sticky sprangletop	LEVI5	Leptochloa viscida	0–17	-
	Mexican sprangletop	LEFUU	Leptochloa fusca ssp. uninervia	0–11	_
	tufted lovegrass	ERPE	Eragrostis pectinacea	0–6	_
	little barley	HOPU	Hordeum pusillum	0–6	_
	delicate muhly	MUFR	Muhlenbergia fragilis	0–6	_
	littleseed muhly	MUMI	Muhlenbergia microsperma	0–6	-
	witchgrass	PACA6	Panicum capillare	0–6	_

	Mexican panicgrass	PAHI5	Panicum hirticaule	0–6	
	Bigelow's bluegrass	POBI	Poa bigelovii	0–6	
	poverty dropseed	SPVA	Sporobolus vaginiflorus	0–6	
	Arizona signalgrass	URAR	Urochloa arizonica	0–6	
	sixweeks fescue	VUOC	Vulpia octoflora	0–6	
	Arizona brome	BRAR4	Bromus arizonicus	0–6	
	sixweeks threeawn	ARAD	Aristida adscensionis	0–6	
Forb	-				
4	Perennial forbs			6–56	
	fingerleaf gourd	CUDI	Cucurbita digitata	1–17	
	Missouri gourd	CUFO	Cucurbita foetidissima	0–17	
	weakleaf bur ragweed	AMCO3	Ambrosia confertiflora	1–17	
	alkali marsh aster	ALPA14	Almutaster pauciflorus	0–6	
	scarlet spiderling	восо	Boerhavia coccinea	0–6	
	spiny chloracantha	CHSP11	Chloracantha spinosa	0–6	
	coyote gourd	CUPA	Cucurbita palmata	0–6	
	beeblossom	GAURA	Gaura	0–6	
	southwestern mock vervain	GLGO	Glandularia gooddingii	0–6	
	small matweed	GUDE	Guilleminea densa	0–6	
	Indian rushpea	HOGL2	Hoffmannseggia glauca	0–6	
	lacy tansyaster	MAPI	Machaeranthera pinnatifida	0–6	
	camphor pluchea	PLCA7	Pluchea camphorata	0–6	
	canaigre dock	RUHY	Rumex hymenosepalus	0–6	
	earleaf fanpetals	SITR	Sida tragiifolia	0–6	
	silverleaf nightshade	SOEL	Solanum elaeagnifolium	0–6	
	silky sophora	SONU	Sophora nuttalliana	0–6	
	gooseberryleaf globemallow	SPGR2	Sphaeralcea grossulariifolia	0–6	
	spear globemallow	SPHA	Sphaeralcea hastulata	0–6	
	dwarf desertpeony	ACNA2	Acourtia nana	0–2	
	clasping milkweed	ASAM	Asclepias amplexicaulis	0–1	
5	Annual forbs	1		1–84	
	common sunflower	HEAN3	Helianthus annuus	0–56	
	common sunflower	HEAN3	Helianthus annuus	0–56	
	San Pedro matchweed	XAGY	Xanthocephalum gymnospermoides	0–34	
	Nuttall's povertyweed	MONU	Monolepis nuttalliana	0–34	
	salt heliotrope	HECU3	Heliotropium curassavicum	0–28	
	wheelscale saltbush	ATEL	Atriplex elegans	0–28	
	western tansymustard	DEPI	Descurainia pinnata	1–28	
	wheelscale saltbush	ATEL	Atriplex elegans	1–28	
	Wright's saltbush	ATWR	Atriplex wrightii	0–28	
	carelessweed	AMPA	Amaranthus palmeri	0–28	
	salt heliotrope	HECU3	Heliotropium curassavicum	0–28	

seaside heliotrope	HECUO	Heliotropium curassavicum var. oculatum	0–28	
Nuttall's povertyweed	MONU	Monolepis nuttalliana	0–28	
San Pedro matchweed	XAGY	Xanthocephalum gymnospermoides	0–28	
hairy desertsunflower	GECA2	Geraea canescens	0–17	
intermediate pepperweed	LEVIM	Lepidium virginicum var. medium	0–17	
longleaf false goldeneye	HELOA2	Heliomeris longifolia var. annua	0–17	
longleaf false goldeneye	HELOL	Heliomeris longifolia var. longifolia	0–17	
camphorweed	HESU3	Heterotheca subaxillaris	0–17	
goosefoot	CHENO	Chenopodium	0–17	
Wright's saltbush	ATWR	Atriplex wrightii	0–17	
goosefoot	CHENO	Chenopodium	0–17	
carelessweed	AMPA	Amaranthus palmeri	0–17	
bristly fiddleneck	AMTE3	Amsinckia tessellata	0–17	
intermediate pepperweed	LEVIM	Lepidium virginicum var. medium	0–17	
western tansymustard	DEPI	Descurainia pinnata	0–17	
longleaf false goldeneye	HELOA2	Heliomeris longifolia var. annua	0–17	
hairy desertsunflower	GECA2	Geraea canescens	0–11	
slender goldenweed	MAGR10	Machaeranthera gracilis	0–11	
tanseyleaf tansyaster	MATA2	Machaeranthera tanacetifolia	0–11	
golden crownbeard	VEEN	Verbesina encelioides	0–11	
cryptantha	CRYPT	Cryptantha	0–11	
golden crownbeard	VEEN	Verbesina encelioides	0–11	
shaggyfruit pepperweed	LELA	Lepidium lasiocarpum	0–6	
sleepy silene	SIAN2	Silene antirrhina	0–6	
purslane	PORTU	Portulaca	0–6	
crestrib morning-glory	IPCO2	Ipomoea costellata	0–6	
Thurber's morning- glory	IPTH	Ipomoea thurberi	0–6	
slender goldenweed	MAGR10	Machaeranthera gracilis	0–6	
tanseyleaf tansyaster	MATA2	Machaeranthera tanacetifolia	0–6	
desert Indianwheat	PLOV	Plantago ovata	0–6	
New Mexico thistle	CINE	Cirsium neomexicanum	0–6	
 spurge	EUPHO	Euphorbia	0–6	
fewflower beggarticks	BILE	Bidens leptocephala	0–6	
Coulter's spiderling	BOCO2	Boerhavia coulteri	0–6	
crested anoda	ANCR2	Anoda cristata	0–6	_
New Mexico thistle	CINE	Cirsium neomexicanum	0–6	
Coulter's spiderling	BOCO2	Boerhavia coulteri	0–6	
aridland goosefoot	CHDE	Chenopodium desiccatum	0–6	
 fringed amaranth	AMFI	Amaranthus fimbriatus	0–6	

	sieepy siiene	SIANZ	Silene anurmina	U-0	_
	purslane	PORTU	Portulaca	0–6	_
	seaside heliotrope	HECUO	Heliotropium curassavicum var. oculatum	0–6	_
	longleaf false goldeneye	HELOL	Heliomeris longifolia var. longifolia	0–6	-
	crestrib morning-glory	IPCO2	Ipomoea costellata	0–6	_
	Thurber's morning- glory	IPTH	Ipomoea thurberi	0–6	_
	shaggyfruit pepperweed	LELA	Lepidium lasiocarpum	0–6	-
	sacred thorn-apple	DAWR2	Datura wrightii	0–2	_
	spurge	EUPHO	Euphorbia	0–2	_
	green carpetweed	MOVE	Mollugo verticillata	0–2	_
	manybristle chinchweed	PEPA2	Pectis papposa	0–2	-
	woolly plantain	PLPA2	Plantago patagonica	0–2	_
	desert unicorn-plant	PRAL4	Proboscidea althaeifolia	0–2	
	doubleclaw	PRPA2	Proboscidea parviflora	0–2	
	spreading fanpetals	SIAB	Sida abutifolia	0–2	
	Wright's thistle	CIWR	Cirsium wrightii	0–2	_
	southwestern pricklypoppy	ARPL3	Argemone pleiacantha	0–2	-
	southwestern pricklypoppy	ARPL3	Argemone pleiacantha	0–2	_
	woolly plantain	PLPA2	Plantago patagonica	0–2	_
	green carpetweed	MOVE	Mollugo verticillata	0–2	_
	curlytop gumweed	GRNUA	Grindelia nuda var. aphanactis	0–2	-
	Coulter's horseweed	LACO13	Laennecia coulteri	0–2	_
	desert unicorn-plant	PRAL4	Proboscidea althaeifolia	0–2	_
	doubleclaw	PRPA2	Proboscidea parviflora	0–2	_
	spreading fanpetals	SIAB	Sida abutifolia	0–2	_
	vervain	VERBE	Verbena	0–2	_
	Wright's thistle	CIWR	Cirsium wrightii	0–1	_
	sacred thorn-apple	DAWR2	Datura wrightii	0–1	_
	American wild carrot	DAPU3	Daucus pusillus	0–1	_
Shrub	/Vine				
6	Miscellaneous shrubs	· · · · · · · · · · · · · · · · · · ·		6–84	
	fourwing saltbush	ATCA2	Atriplex canescens	1–28	
	Mojave seablite	SUMO	Suaeda moquinii	0–28	_
	iodinebush	ALOC2	Allenrolfea occidentalis	0–17	_
	Griffiths' saltbush	ATGR2	Atriplex griffithsii	0–17	_
	cattle saltbush	ATPO	Atriplex polycarpa	0–17	_
	mule-fat	BASA4	Baccharis salicifolia	0–6	_
	shadscale saltbush	ATCO	Atriplex confertifolia	0–6	_
	rubber rabbitbrush	ERNAL	Ericameria nauseosa ssp. consimilis var. leiosperma	0–6	_
	pale desert-thorn	LYPA	Lvcium pallidum	0–6	_

	10	1	7 * * * * * * * * * * * * * * * * * * *	1	Ī
	broom dalea	PSSC6	Psorothamnus scoparius	0–6	_
	fringed twinevine	FUCYC	Funastrum cynanchoides ssp. cynanchoides	0–2	_
	southern goldenbush	ISPL	Isocoma pluriflora	0–2	-
	lotebush	ZIOB	Ziziphus obtusifolia	0–2	_
	Drummond's clematis	CLDR	Clematis drummondii	0–2	_
	longleaf jointfir	EPTR	Ephedra trifurca	0–2	_
	desertbroom	BASA2	Baccharis sarothroides	0–1	_
	burroweed	ISTE2	Isocoma tenuisecta	0–1	_
	broom snakeweed	GUSA2	Gutierrezia sarothrae	0–1	_
7	Succulents	•		0–22	
	devil's cholla	GRKU	Grusonia kunzei	0–11	_
	cactus apple	OPEN3	Opuntia engelmannii	0–6	_
	candy barrelcactus	FEWI	Ferocactus wislizeni	0–6	_
	Arizona pencil cholla	CYAR14	Cylindropuntia arbuscula	0–6	-
	Christmas cactus	CYLE8	Cylindropuntia leptocaulis	0–6	_
	walkingstick cactus	CYSP8	Cylindropuntia spinosior	0–6	_
	staghorn cholla	CYVE3	Cylindropuntia versicolor	0–6	_
	hedgehog cactus	ECHIN3	Echinocereus	0–1	_
Tree		-1			
8	Trees			6–112	
	western honey mesquite	PRGLT	Prosopis glandulosa var. torreyana	6–112	_
	velvet mesquite	PRVE	Prosopis velutina	0–28	_
	western soapberry	SASAD	Sapindus saponaria var. drummondii	0–17	_
	catclaw acacia	ACGR	Acacia greggii	0–17	_
	•	-	•	•	

Animal community

Alkalai sacaton usually does not green up until the first summer rains in July, so the green season is the summer rainy season. Grazing must be concentrated in the summer to effectively utilize the forage resource. Areas of the site should be fenced exclusively for best management of alkalai sacaton. Herbaceous forage on the site will be deficient in digestible protein in the fall-winter-spring period. Burning or mowing can be used to freshen old growth alkalai sacaton. Burning should only be used in years with good winter-spring rainfall and should be done in late February to early March. Spring re-growth should not be grazed until the first summer rains. Several species of atriplex occur on the site but in such small quantities that the site is not valuable as winter forage area.

Free water is available some of the year in playa areas, natural charcos, and discontinuous gullies. This factor, in combination with the mixture of wooded areas and open grassland, make the site home to a variety of wildlife, and important for a variety of migratory waterfowl including sandhill cranes.

Hydrological functions

This site occurs as grassy alluvial fans flanking the Willcox playa and as grassy floodplains along streams. It acts to absorb water and catch sediment from large flood events.

Recreational uses

Hunting, hiking, horseback riding, bird watching, photography

Wood products

In areas where mesquite has increased to moderate canopy levels (15-30%) there can be considerable fuel-wood available.

Inventory data references

Range 417s include 3 in good condition and 4 in fair condition.

Type locality

Location 1: Cochise County, AZ				
Township/Range/Section	T13S R25E S31			
General legal description	Willcox Playa			

Contributors

Dan Robinett Larry D. Ellicott Steve Barker Unknown

Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

Author(s)/participant(s)	Dave Womack
Contact for lead author	NRCS Tucson Area Office
Date	03/04/2005
Approved by	S. Cassady
Approval date	
Composition (Indicators 10 and 12) based on	Annual Production

Indicators

1.	Number and extent of rills: None
2.	Presence of water flow patterns: None
3.	Number and height of erosional pedestals or terracettes: None

4. Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground): 5-15%

5.	Number of gullies and erosion associated with gullies: None
6.	Extent of wind scoured, blowouts and/or depositional areas: None
7.	Amount of litter movement (describe size and distance expected to travel): All litter size classes staying in place.
	Soil surface (top few mm) resistance to erosion (stability values are averages - most sites will show a range of values): Expect values of 1-3 in bare areas and 4-6 in grass and shrub canopies.
9.	Soil surface structure and SOM content (include type of structure and A-horizon color and thickness): Weak granular; color is 7.5-10YR5/4 Dry, 7.5-10YR3/3 Moist; thickness to 5 inches.
0.	Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff: Canopy 50-60%, basal 15%, litter 30%. 60% of cover is perennial mid grasses, 10% short grasses, 5-10% annual forbs, 5-10% annual grasses, 5% trees and shrubs, and 5% perennial forbs. Cover is well dispersed throughout site.
1.	Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site): None
	Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):
	Dominant: Perennial midgrasses > perennial short grasses > shrubs & trees > annual grasses & forbs > perennial forbs
	Sub-dominant:
	Other:
	Additional:
3.	Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence): 50% basal area loss of perennial grasses due to prolonged regional drought.
4.	Average percent litter cover (%) and depth (in):
5.	Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annual-production): 800 lbs/ac unfavorable precipitation; 1500 lbs/ac normal precipitation; 2500 lbs/ac favorable precipitation.

	Between the (best-blue mode of section 1 and 1 a
	Potential invasive (including noxious) species (native and non-native). List species which BOTH characteri degraded states and have the potential to become a dominant or co-dominant species on the ecological sit their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference for the ecological site: Mesquite
	Perennial plant reproductive capability: No affected due to regional prolonged drought.
,	