

Ecological site R047XB308UT Upland Loam (mountain big sagebrush/Indian ricegrass)

Last updated: 2/06/2025 Accessed: 05/14/2025

General information

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.



Figure 1. Mapped extent

Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated.

MLRA notes

Major Land Resource Area (MLRA): 047X–Wasatch and Uinta Mountains

MLRA 47 occurs in Utah (86 percent), Wyoming (8 percent), Colorado (4 percent), and Idaho (2 percent). It encompasses approximately 23,825 square miles (61,740 square kilometers). The northern half of this area is in the Middle Rocky Mountains Province of the Rocky Mountain System. The southern half is in the High Plateaus of the Utah Section of the Colorado Plateaus Province of the Intermontane Plateaus. Parts of the western edge of this MLRA are in the Great Basin Section of the Basin and Range Province of the Intermontane Plateaus. The MLRA includes the Wasatch Mountains, which trend north and south, and the Uinta Mountains, which trend east and west. The steeply sloping, precipitous Wasatch Mountains have narrow crests and deep valleys. Active faulting and erosion are a dominant force in controlling the geomorphology of the area. The Uinta Mountains have a broad, gently arching, elongated shape. Structurally, they consist of a broadly folded anticline that has an erosion-resistant quartzite core. The Wasatch and Uinta Mountains have an elevation of 4,900 to about 13,500 feet (1,495 to 4,115 meters).

The mountains in this area are primarily fault blocks that have been tilted up. Alluvial fans at the base of the mountains are recharge zones for the basin fill aquifers. An ancient shoreline of historic Bonneville Lake is evident on the footslopes along the western edge of the area. Rocks exposed in the mountains are mostly Mesozoic and Paleozoic sediments, but Precambrian rocks are exposed in the Uinta Mountains. The Uinta Mountains are one of the few ranges in the United States that are oriented west to east. The southern Wasatch Mountains consist of

Tertiary volcanic rocks occurring as extrusive lava and intrusive crystalline rocks.

The average precipitation is from 8 to 16 inches (203 to 406 mm) in the valleys and can range up to 73 inches (1854 mm) in the mountains. In the northern and western portions of the MLRA, peak precipitation occurs in the winter months. The southern and eastern portions have a greater incidence of high-intensity summer thunderstorms; hence, a significant amount of precipitation occurs during the summer months. The average annual temperature is 30 to 50 degrees Fahrenheit (-1 to 15 C). The freeze-free period averages 140 days and ranges from 60 to 220 days, generally decreasing in length with elevation.

The dominant soil orders in this MLRA are Aridisols, Entisols, Inceptisols, and Mollisols. The lower elevations are dominated by a frigid temperature regime, while the higher elevations experience cryic temperature regimes. Mesic temperature regimes come in on the lower elevations and south facing slopes in the southern portion of this MLRA. The soil moisture regime is typically xeric in the northern part of the MLRA, but grades to ustic in the extreme eastern and southern parts. The mineralogy is generally mixed and the soils are very shallow to very deep, generally well drained, and loamy or loamy-skeletal.

LRU notes

E47B is the Wasatch Mountains South MLRA. It occurs in the Loa, Panguitch, New Harmony area. Most of Zion, Bryce Canyon National Parks and Cedar Breaks National Monument are in this area. This area is composed of mountain ranges that run north and south.

Ecological site concept

The soils of this site formed mostly in alluvium from igneous rock. Surface soils are gravelly loam, loam or fine sandy loam in texture. Rock fragments may be present on the soil surface and throughout the profile, but make up less than 35 percent of the soil volume. These soils are deep to very deep, well-drained, and have moderately slow to moderate permeability. pH is neutral to moderately alkaline. Available water-holding capacity ranges from 4 to 7 inches of water in the upper 60 inches of soil. The soil moisture regime is mostly ustic and the soil temperature regime is frigid. Precipitation ranges from 12 to 16 inches annually.

Associated sites

R047XB304UT	Upland Gravelly Loam (pinyon/Utah juniper)		
R047XB309UT	Upland Loam (black sagebrush)		
R047XB326UT	Upland Shallow Loam (pinyon/Utah juniper)		
R047XB016UT	Interzonal Loamy Bottom (basin wildrye)		

Similar sites

R047XB309UT	Upland Loam (black sagebrush)
-------------	-------------------------------

Table 1. Dominant	plant species
-------------------	---------------

Tree	Not specified
Shrub	(1) Artemisia tridentata ssp. vaseyana
Herbaceous	(1) Achnatherum hymenoides

Physiographic features

Dissected Alluvial Fans, hills and mountain slopes

Landforms	(1) Alluvial fan(2) Hill(3) Mountain slope
Runoff class	Low to medium
Flooding frequency	None
Ponding frequency	None
Elevation	1,981–2,591 m
Slope	2–30%
Aspect	Aspect is not a significant factor

Climatic features

The climate is characterized by cold, snowy winters and cool, moist summers. Approximately 50 percent of the moisture comes during the plant growth period from April 1 through September 30. On the average April, May, and June are the driest months and July, August, and September are the wettest months.

Table 3. Representative climatic features

Frost-free period (characteristic range)	
Freeze-free period (characteristic range)	70-100 days
Precipitation total (characteristic range)	305-406 mm

Influencing water features

Due to its landscape position, this site is not influenced by streams or wetlands.

Wetland description

N/A

Soil features

The soils of this site formed mostly in alluvium from igneous rock. Surface soils are gravelly loam, loam or fine sandy loam in texture. Rock fragments may be present on the soil surface and throughout the profile, but make up less than 35 percent of the soil volume. These soils are deep to very deep, well-drained, and have moderately slow to moderate permeability. pH is neutral to moderately alkaline. Available water-holding capacity ranges from 4 to 7 inches of water in the upper 60 inches of soil. The soil moisture regime is mostly ustic and the soil temperature regime is frigid. Precipitation ranges from 12 to 16 inches annually.

Modal Soil: Panguitch L — Coarse-loamy, mixed, superactive, frigid Typic Argiustolls

•	
Parent material	(1) Alluvium–igneous rock
Surface texture	(1) Gravelly loam(2) Loam(3) Fine sandy loam
Family particle size	(1) Fine-loamy (2) Coarse-loamy
Drainage class	Well drained
Permeability class	Moderately slow to moderate
Depth to restrictive layer	152–254 cm

Table 4. Representative soil features

Soil depth	152–254 cm
Surface fragment cover <=3"	0–25%
Surface fragment cover >3"	0–2%
Available water capacity (Depth not specified)	10.16–17.78 cm
Calcium carbonate equivalent (Depth not specified)	0–20%
Electrical conductivity (Depth not specified)	0–2 mmhos/cm
Sodium adsorption ratio (Depth not specified)	0–6
Soil reaction (1:1 water) (Depth not specified)	6.6–8.4
Subsurface fragment volume <=3" (Depth not specified)	5–25%
Subsurface fragment volume >3" (Depth not specified)	0–10%

Ecological dynamics

It is impossible to determine in any quantitative detail the Historic Climax Plant Community (HCPC) for this ecological site because of the lack of direct historical documentation preceding all human influence. In some areas, the earliest reports of dominant plants include the cadastral survey conducted by the General Land Office, which began in the late 19th century for this area (Galatowitsch 1990). However, up to the 1870s the Shoshone Indians, prevalent in northern Utah and neighboring states, grazed horses and set fires to alter the vegetation for their needs (Parson 1996). In the 1860s, Europeans brought cattle and horses to the area, grazing large numbers of them on unfenced parcels year-long (Parson 1996). Itinerant and local sheep flocks followed, largely replacing cattle as the browse component increased.

Below is a State and Transition Model diagram to illustrate the "phases" (common plant communities), and "states" (aggregations of those plant communities) that can occur on the site. Differences between phases and states depend primarily upon observations of a range of disturbance histories in areas where this ESD is represented. These situations include grazing gradients to water sources, fence-line contrasts, patches with differing dates of fire, herbicide treatment, tillage, etc. Reference State 1 illustrates the common plant communities that probably existed just prior to European settlement.

The major successional pathways within states, ("community pathways") are indicated by arrows between phases. "Transitions" are indicated by arrows between states. The drivers of these changes are indicated in codes decipherable by referring to the legend at the bottom of the page and by reading the detailed narratives that follow the diagram. The transition between Reference State 1 and State 2 is considered irreversible because of the naturalization of exotic species of both flora and fauna, possible extinction of native species, and climate change. There may have also been accelerated soil erosion.

When available, monitoring data (of various types) were employed to validate more subjective inferences made in this diagram. See the complete files in the office of the State Range Conservationist for more details.

The plant communities shown in this State and Transition Model may not represent every possibility, but are probably the most prevalent and recurring plant communities. As more monitoring data are collected, some phases or states may be revised, removed, or new ones may be added. None of these plant communities should necessarily be thought of as "Desired Plant Communities." According to the USDA NRCS National Range and Pasture Handbook (USDA-NRCS 2003), Desired Plant Communities (DPC's) will be determined by the decision-makers and will meet minimum quality criteria established by the NRCS. The main purpose for including descriptions of a plant community is to capture the current knowledge at the time of this revision.

The Reference State is a description of this ecological site just prior to Euro-American settlement but long after the arrival of Native Americans. The description of the Reference State was determined by NRCS Soil Survey Type Site Location information and familiarity with rangeland relict areas where they exist. The least modified plant community would have been co-dominated by mountain big sagebrush (*Artemisia tridentata* ssp. vaseyana) and a mixture of herbaceous species (1.1). The primary disturbance factor prior to European colonization would have been wildfire (1.1a), which would have removed the sagebrush and allowed the herbs to dominate for a time (1.2) As the time elapsed since the last wildfire grew longer (1.2a), mountain big sagebrush would have increased, and the herbaceous component would have decreased correspondingly. A more complete list of species by lifeform for the Reference State is available in the accompanying tables in the "Plant Community Composition by Weight and Percentage" section of this document.

Community Phase 1.1: mountain big sagebrush-steppe/ rich and productive herbaceous component This plant community would have been characterized by the presence of mountain big sagebrush with a rich and productive herbaceous layer.

Community Pathway 1.1a:

Wildfire would remove sagebrush, allowing the herbs to dominate for a time.

Community Phase 1.2: herb dominated

This phase would have been dominated by herbaceous species and having few, if any, mountain big sagebrush present.

Community Pathway 1.2a: Over time, sagebrush would increase, and the herbaceous understory would decrease slightly.

Transition T1a: (State 1 to State 2)

The simultaneous introduction of exotic species, both plants and animals, possible extinctions of native flora and fauna, and climate change has caused State 1 to transition to State 2. Reversal of such historic changes (i.e. a return pathway) back to State 1 is not practical.

State 2: Mountain Big Sagebrush-Steppe/ Introduced Non-natives State

State 2 is identical to State 1 in form and function, with the exception of the presence of non-native plants and animals, possible extinctions of native species, and a different climate. State 2 is a description of the ecological site shortly following Euro-American settlement. This State can be regarded as the current potential. This State varies in the amount of mountain big sagebrush present based upon the time elapsed since the last wildfire.

The least modified plant community is a mountain big sagebrush-steppe, characterized by the co-dominance shrubs and herbaceous species. Mountain big sagebrush is the dominant shrub, but other minor shrubs may be present. There is a rich and diverse mixture of herbs as well. Dominant grasses include Indian ricegrass, blue grama, squirreltail, and needle and thread, and forbs include gooseberry-leaf globemallow, pacific aster and trailing fleabane, among others (2.1). A small component of non-natives will also be present. Wildfire (2.1a) will remove sagebrush and allow the community to become dominated by herbaceous species for a time (2.2). As the length of time elapsed since the last wildfire grows longer (2.2a), sagebrush will re-establish, and the herbs will decrease slightly.

This State is maintained by periodic wildfire and by a healthy, productive, and diverse plant community that can provide native seed sources and promotes soil stability, water infiltration, and soil moisture retention. The resiliency of this State will be maintained by reducing or altering seasons of use and number of livestock. Conversely, this State's resiliency will be negatively impacted by continuous season-long livestock use.

Community Phase 2.1: Mountain big sagebrush-steppe/ rich and productive herbaceous component This plant community is characterized by co-dominance of mountain big sagebrush and a rich and productive understory of herbs.

Community Pathway 2.1a:

Wildfire will remove sagebrush, allowing the herbs to dominate for a time.

Community Phase 1.2: herb dominated

This phase is dominated by herbaceous species and having few, if any, mountain big sagebrush present.

Community Pathway 1.2a:

Over time, sagebrush will increase, and the herbaceous understory will decrease slightly.

Transition T2a: from State 2 to State 3 (Mountain Big Sagebrush-Steppe/ Introduced Non-natives State to Mountain Big Sagebrush Super-dominance State)

Lack of fire and continued heavy livestock grazing during the growing season of grasses will cause State 2 to transition into the Mountain Big sagebrush Super-dominance State (State 3). The approach to this transition is indicated by a loss of the perennial grass understory, an increase in the shrub component relative to the grasses, and evidence of soil loss. The trigger causing this transition is heavy growing season grazing.

State 3: Mountain Big Sagebrush Super-dominance State

This State is characterized by a super-dominance of mountain big sagebrush with a markedly diminished grass component which occurs in the absence of fire and with continued heavy impacts from livestock grazing. The stability of this State is maintained by the lack of a healthy, productive and diverse herb component capable of providing native seed source, soil stabilization, and soil moisture retention, and by an abundant seed source for mountain big sagebrush. The resiliency of this State will be maintained by decreased grazing during the growing season of grasses. Conversely, the resiliency of this State will be negatively impacted by continued heavy growing season livestock use.

Community Phase 3.1: abundant Mountain big sagebrush / diminished perennial herbs This plant community is characterized by a dramatic increase in mountain big sagebrush with substantial reduction in the perennial herbaceous component as compared to State 2.

Transition T3a: from State 3 to State 4 (Mountain Big Sagebrush Super-dominance State to Yellow Rabbitbrush State)

Wildfire or brush management, either by mechanical means or prescribed fire, will temporarily remove the mountain big sagebrush. However, an increase in yellow rabbitbrush (*Chrysothamnus viscidiflorus*) is expected in most circumstances. The herbaceous component will also increase after fire or brush beating. The approach to this transition is indicated by an increase in rabbitbrush seedlings. The transition is triggered by wildfire or mechanical removal of sagebrush accompanied by heavy grazing.

Transition T3b: from State 3 to State 5 (Mountain Big Sagebrush Super-dominance State to Native Perennial Grass State)

Brush management using 2, 4-D or 2, 4-5T will remove both the shrub and forb components, leaving the grasses. This transition is triggered by herbicide application.

Transition T3c: from State 3 to State 6 (Mountain Big Sagebrush Super-dominance State to Introduced Grassland State)

This transition occurs when a decision is made to increase forage production by tilling and re-seeding with intermediate wheatgrass (*Thinopyrum intermedium*), smooth brome (*Bromus inermis*), or orchardgrass (*Dactylis glomerata*) –all introduced (non-native) species.

Restoration Pathway: R3a

Prescribed grazing during the non-growing season of the grasses and forbs will allow the native perennial herbaceous species to re-establish, returning the community to a mountain big sagebrush-steppe (State 2).

State 4: Yellow Rabbitbrush State

This State is characterized by having an abundance of yellow rabbitbrush and forb species and a reduced amount of mountain big sagebrush. This State occurs when the sagebrush is removed by fire or mechanical means from an area where it was previously super-dominant. This State is maintained by lack of sagebrush seedling establishment. It could also be maintained by periodic sagebrush removal by fire.

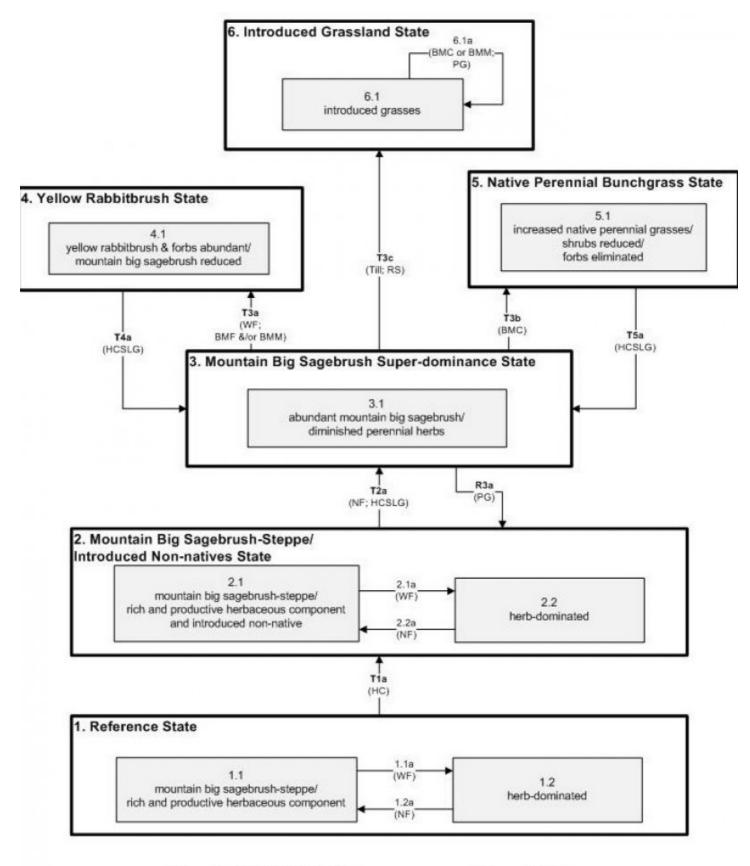
Community Phase 4.1: yellow rabbitbrush and forbs abundant/ mountain big sagebrush reduced This Phase is characterized by having an abundance of yellow rabbitbrush and forb species and having a reduced amount of mountain big sagebrush. Transition T4a: from State 4 to State 3 (Yellow Rabbitbrush State to Mountain Big Sagebrush Super-dominance State)

Heavy continuous season long grazing will impact the herbaceous component, allowing the shrubs to return to dominance.

State 5: Native Perennial Bunchgrass State

This State is dominated by native perennial bunchgrasses such as Indian ricegrass, blue grama, squirreltail, and needle and thread. Shrubs and have been reduced and forbs eliminated by 2,4-D[™] or 2,4-5T[™] application. This State is maintained by the lack of shrub and forb seed source, and the abundance of native perennial grass seed source.

Community Phase 5.1: increased native perennial grasses/ shrubs reduced/ forbs eliminated This Phase is characterized by the dominance of perennial native bunchgrasses such as Indian ricegrass, blue grama, squirreltail, and needle and thread. Shrubs and have been reduced and forbs eliminated.


Transition T5a: from State 5 to State 3 (Native Perennial Bunchgrass State to Mountain Big Sagebrush Superdominance State)

Heavy continuous season long grazing will impact the native graminoids, allowing the shrubs to return to dominance. The approach to this transition is indicated by an increase in sagebrush seedlings. This transition is triggered by heavy growing season livestock grazing.

State 6: Introduced Grassland State

This state is characterized by the dominance of seeded grasses such as intermediate wheatgrass, smooth brome, or orchardgrass. This state occurs when a decision is made to increase forage production by tilling and re-seeding introduced grasses. Periodic brush management is required to maintain the grass-dominance of this state. This resiliency of this State can be maintained by sustainable levels of livestock grazing as determined by monitoring. Conversely, continued heavy use will negatively impact the resiliency of this state.

State and transition model

BMC	Brush Management (chemical)	NF	No Fire
BMF	Brush Management (fire)	PG	Prescribed grazing
BMM	Brush Management (mechanical)	RS	Re-seeding
HC	Historic change	Till	Tillage
HCSLG	Heavy Continuous Season Long Grazing	WE	Wildfire

State 1 Reference State

Community 1.1

Reference Plant Community

The dominant aspect of the plant community is Indian ricegrass. The composition by air-dry weight is approximately 60 percent perennial grasses, 10 percent forbs, and 30 percent shrubs.

Table 5. Annual production by plant type

Plant Type	Low (Kg/Hectare)	Representative Value (Kg/Hectare)	
Grass/Grasslike	504	639	807
Shrub/Vine	252	319	404
Forb	84	106	135
Total	840	1064	1346

Table 6. Ground cover

Tree foliar cover	0%
Shrub/vine/liana foliar cover	29-31%
Grass/grasslike foliar cover	29-31%
Forb foliar cover	4-6%
Non-vascular plants	0%
Biological crusts	0%
Litter	0%
Surface fragments >0.25" and <=3"	0%
Surface fragments >3"	0%
Bedrock	0%
Water	0%
Bare ground	0%

Table 7. Canopy structure (% cover)

Height Above Ground (M)	Tree	Shrub/Vine	Grass/ Grasslike	Forb
<0.15	-	_	-	_
>0.15 <= 0.3	-	_	_	4-6%
>0.3 <= 0.6	-	_	29-31%	_
>0.6 <= 1.4	-	29-31%	-	_
>1.4 <= 4	-	_	_	_
>4 <= 12	-	_	_	_
>12 <= 24	-	_	_	_
>24 <= 37	-	_	_	_
>37	-	-	-	-

Additional community tables

Table 8. Community 1.1 plant community composition

Group	Common Name	Symbol	Scientific Name	Annual Production (Kg/Hectare)	Foliar Cover (%)
Shrub	/Vine				
0	Dominant Shrubs			224–392	
	mountain big sagebrush	ARTRV	Artemisia tridentata ssp. vaseyana	168–224	_
	winterfat	KRLA2	Krascheninnikovia lanata	56–112	_
	yellow rabbitbrush	CHVI8	Chrysothamnus viscidiflorus	34–56	_
3	Sub-Dominant Shrubs			56–247	
	Shrub (>.5m)	2SHRUB	Shrub (>.5m)	56–112	_
	black sagebrush	ARNO4	Artemisia nova	0–34	_
	rubber rabbitbrush	ERNA10	Ericameria nauseosa	0–34	_
	broom snakeweed	GUSA2	Gutierrezia sarothrae	0–34	_
	antelope bitterbrush	PUTR2	Purshia tridentata	0–34	_
Grass	/Grasslike	•	· · · · ·	<u>.</u>	
0	Dominant Grasses			448–673	
	Indian ricegrass	ACHY	Achnatherum hymenoides	224–280	-
	blue grama	BOGR2	Bouteloua gracilis	112–168	_
	squirreltail	ELEL5	Elymus elymoides	56–112	-
	needle and thread	HECO26	Hesperostipa comata	56–112	-
1	Sub-Dominant Grasses			112–359	
	Grass, annual	2GA	Grass, annual	56–112	-
	Grass, perennial	2GP	Grass, perennial	56–112	_
	pine needlegrass	ACPI2	Achnatherum pinetorum	0–34	_
	western wheatgrass	PASM	Pascopyrum smithii	0–34	-
	Sandberg bluegrass	POSE	Poa secunda	0–34	_
	bluebunch wheatgrass	PSSP6	Pseudoroegneria spicata	0–34	_
Forb	ł	1	Ⅰ		
0	Dominant Forbs			34–101	
	trailing fleabane	ERFL	Erigeron flagellaris	11–34	_
	gooseberryleaf globemallow	SPGR2	Sphaeralcea grossulariifolia	11–34	_
	Pacific aster	SYCHC	Symphyotrichum chilense var. chilense	11–34	_
2	Sub-Dominant Forbs			22–202	
	Forb, annual	2FA	Forb, annual	11–56	_
	Forb, perennial	2FP	Forb, perennial	11–56	_
	white sagebrush	ARLU	Artemisia ludoviciana	0–22	_
	freckled milkvetch	ASLE8	Astragalus lentiginosus	0–22	_
	James' cryptantha	CRCI3	Cryptantha cinerea	0–22	_
	crispleaf buckwheat	ERCO14	Eriogonum corymbosum	0–22	_

Animal community

Good summer grazing for livestock. Good forage production – Fair brush cover. Mule deer and elk.

Hydrological functions

The soils in this site are in the B hydrologic group.

Recreational uses

This site has good aesthetic appearances and beauty

Wood products

None

Other products

Inventory data references

Information presented here has been derived from NRCS clipping data and other inventory data. Field observations from range trained personnel were also used.

Other references

Alexander, R. R. 1985. Major habitat types, community types, and plant communities in the Rocky Mountains. USDA- Forest Service Rocky Mountain Forest and Range Experiment Station. General technical report RM-123. 105p.

Alexander 1988. Forest vegetation on National Forests in the Rocky Mountain and Intermountain Regions: Habitat types and community types. USDA- Forest Service Rocky Mountain Forest and Range Experiment Station. General technical report RM-162. 47p.

Galatowitsch, S.M. 1990. Using the original land survey notes to reconstruct pre-settlement landscapes in the American West. Great Basin Naturalist: 50(2): 181-191. Keywords: [Western U.S., conservation, history, human impact]

Parson, R. E. 1996. A History of Rich County. Utah State Historical Society, County Commission, Rich County, Utah. Keywords: [Rich County, Utah, Historic land use, European settlements]

USDA-NRCS. 2003. National Range and Pasture Handbook. in USDA, editor, USDA-Natural Resources Conservation Service-Grazing Lands Technology Institute. Keywords: [Western US, Federal guidelines, Range pasture management]

Western Regional Climate Center, Western U.S. Climate Historical Summaries. Available at: http://www.wrcc.dri.edu/summary/Climsmut.html. Accessed 15 June 2009.

Web Soil Survey, Official Soil Series Descriptions. Available at: http://soils.usda.gov/technical/classification/osd/index.html. Accessed 15 June 2009.

Contributors

Tom Jarman, Tom Simper

Approval

Kendra Moseley, 2/06/2025

Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

Author(s)/participant(s)	V. Keith Wadman (NRCS Retired).	
Contact for lead author	shane.green@ut.usda.gov	
Date	10/24/2012	
Approved by	Kendra Moseley	
Approval date		
Composition (Indicators 10 and 12) based on	Annual Production	

Indicators

- Number and extent of rills: None to Very Rare. Some very minor rill development may occur on steeper slopes (>
 10%) or on areas located below exposed bedrock or other water shedding areas where increased runoff may occur.
 Where these rills are present, they should be fairly short (3-6 feet), < 1 inch deep and somewhat widely spaced (4-8 feet)
 Minor rill development may be observed on all slopes following major thunderstorm or spring runoff events but should
 heal during the next growing season.
- Presence of water flow patterns: Rare. Some very minor evidence of water flow patterns may be found winding around perennial plant bases. They show little evidence of current erosion. They are expected to be short (3-6 feet), stable, sinuous and normally not connected. There may be very minor evidence of deposition. Evidence of water flow may increase somewhat in slopes > 10%.
- Number and height of erosional pedestals or terracettes: Perennial vegetation shows little evidence of erosional pedestalling (1 to 2% of individual plants). Plant roots are covered and most litter remains in place around plant crowns. Terracettes should be absent or, if present, stable. A slight increase in both pedestal and terracette development may occur with increasing slope.
- 4. Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground): Bare ground ranges from 20% 30%. Soil surface may be covered by 0 to 10% coarse fragments. Bare ground openings should not be greater than 1 to 2 feet in diameter and should normally not be connected.
- 5. Number of gullies and erosion associated with gullies: None to Rare at site level. Scattered landscape level gully channels, however, are a normal component of desert environments. Where landscape gullies are present, they should be stable, partially vegetated on their sides and bottoms, with no evidence of head-cutting. Some slight increase in disturbance may be evident following significant weather events or when gullies convey considerable runoff from higher elevation rocky or naturally eroding areas.

is present. Wind caused blowouts and deposition are not present.

- 7. Amount of litter movement (describe size and distance expected to travel): Most litter resides in place with some redistribution caused by water movement. Minor litter removal may occur in flow channels with deposition occurring within 1 to 2 feet at points of obstruction. The majority of litter accumulates at the base of plants. Some grass leaves and small twigs (grass stems) may accumulate in soil depressions adjacent to plants. Woody stems are not likely to move. However, some litter movement is expected (up to 6 feet) with increases in slopes >10% and/or increased runoff resulting from heavy thunderstorms.
- 8. Soil surface (top few mm) resistance to erosion (stability values are averages most sites will show a range of values): This site should have a soil stability rating of 5 or 6 under the plant canopies, and a rating of 4 to 5 in the interspaces. The average rating should be a 5. Soil surface textures are typically loams, very fine sandy loams and silt loams.
- 9. Soil surface structure and SOM content (include type of structure and A-horizon color and thickness): (Frandsen) Soil surface 0-3 inches. Texture is a loam; color is light grayish brown (10YR 6/2); and structure is weak fine granular. Ochric epipedon ranges to 21 inches. Use the specific information for the soil you are assessing found in the published soil survey to supplement this description.
- 10. Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff: Perennial vegetation produces sufficient cover and spatial arrangement to intercept most raindrops and reduce raindrop splash erosion. Litter on soil surface and cryptogamic crusting, where present, also protects soil from splash erosion and encourages a higher rate of infiltration. Plant spatial distribution should slow runoff, allowing additional time for infiltration. Bare spaces are expected to be small and irregular in shape and are usually not connected. Vegetative structure is usually adequate to capture snow and ensure that snowmelt occurs in a controlled manner, allowing maximum time for infiltration, and reducing runoff and erosion in all but the most extreme storm events. When perennial grasses and shrubs decrease due to natural events including drought, insect damage, etc., which reduce ground cover and increase bare ground, runoff is expected to increase and associated infiltration reduced.
- 11. Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site): None. Some soils have an argillic horizon that could be mistaken for a compaction pan.
- 12. Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):

Dominant: Cool Season Perennial bunchgrasses (Indian ricegrass, bottlebrush squirreltail), = > Non-sprouting shrub (mountain big sagebrush, winterfat)

Sub-dominant: Cool Season Rhizomatous grasses (western wheatgrass) > Warm season grasses (Blue grama) > Sprouting shrubs (green rabbitbrush, rubber rabbitbrush) > Perennial forbs (gooseberryleaf globemallow).

Other: A wide variety of other perennial grasses and both perennial and annual forbs can be expected to occur in the

plant community.

Additional: Natural disturbance regimes include fire, drought, and insects. Assumed fire cycle of 30 to 40+ years. Functional/structural groups may appropriately contain non-native species if their ecological function is the same as the native species in the reference. Following a disturbance such as fire, drought, rodents or insects that remove woody vegetation, forbs and perennial grasses (herbaceous species) may dominate the community for a period of time. If a disturbance has not occurred for an extended period of time, woody species may continue to increase. These conditions would reflect different functional community phases within the reference state.

- 13. Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence): All age classes of perennial grasses should be present under average to above average growing conditions with age class expression likely subdued during periods of extended drought. Slight decadence in the principle shrubs could occur near the end of the fire cycle or during periods of extended drought, or insect infestations. In general, a mix of age classes should be expected with some dead and decadent plants present.
- 14. Average percent litter cover (%) and depth (in): Litter cover will be heavier under plants. Most litter will be herbaceous and depths of 1 to 2 inches would be considered normal. Perennial vegetation should be well distributed on the site.
- 15. Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annualproduction): Annual production in air-dry herbage should be approximately 1200 - 1500 #/acre on an average year but could range from 900 - 2000 #/acre during periods of prolonged drought or above average precipitation.
- 16. Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site: Cheatgrass, Halogeton, Allysum, Russian thistle, mustard species, Utah juniper.
- 17. **Perennial plant reproductive capability:** All perennial plants should have the ability to reproduce in all years, except in extreme drought years. Green rabbitbrush sprouts vigorously following fire. There are no restrictions on either seed or vegetative reproduction. Some seedling recruitment of major species is present during average and above average growing years.