

Ecological site R084AY075OK Sandy Loam Savannah

Last updated: 9/21/2023 Accessed: 05/10/2025

General information

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

Figure 1. Mapped extent

Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated.

MLRA notes

Major Land Resource Area (MLRA): 084A–North Cross Timbers

MLRA 84A "North Cross Timbers" is characterized by rolling to hilly uplands with oak trees, bedrock outcrops, and narrow stream valleys. It is believed that the Cross Timbers ecosystem is one the least disturbed forest types remaining in the Eastern US. Major rivers in this MLRA include the Verdigris River in Kansas and the Arkansas, Cimarron, and South Canadian Rivers in Oklahoma. The western parts of this MLRA are underlain by sandstone and shale of Permian age, while the eastern parts are underlain by sandstone and shale of Permian age. There are also occurrences of Pleistocene age stream terraces along the rivers.

Classification relationships

This ecological site is correlated to soil components at the Major Land Resource Area (MLRA) level which is further described in USDA Ag Handbook 296.

Level IV EPA Ecoregions 27o "Crosstimbers Transition", 29a "Northern Crosstimbers", and 29h "Northwestern Crosstimbers".

Ecological site concept

These sites occur over sandstone and shale parent material on gently sloping to moderately steep ridge crests and side slopes. The reference vegetation is tallgrass prairie species with an overstory of Post Oak and Blackjack Oak averaging 30 percent canopy, creating a savannah mosaic ecotype. This plant community is disturbance driven and requires periodic fire to maintain the savannah community. When fire is removed from the system, the site is at risk of encroachment of woody species and buildup of leaf litter, altering the plant community and driving it towards a woodland system with little understory production.

Associated sites

R084AY018OK	K Deep Sand Savannah Savannah site over deep sand. Lower landscape positions.	
R084AY088OK	Shallow Savannah Many times intermingled with Sandy Savannah. Shallow soils, less productive.	

Similar sites

	Deep Sand Savannah Savannah site over deep sand. Lower landscape positions.	
R084AY088OK	Shallow Savannah Many times intermingled with Sandy Savannah. Shallow soils, less productive.	

Table 1. Dominant plant species

Tree	(1) Quercus stellata (2) Quercus marilandica
Shrub	Not specified
Herbaceous	(1) Andropogon gerardii(2) Schizachyrium scoparium

Physiographic features

This site occurs on very gently sloping to moderately steep ridge crest and side slopes in the Cross Timbers. Slopes range from1 to 25 percent but are typically 5 to 15 percent.

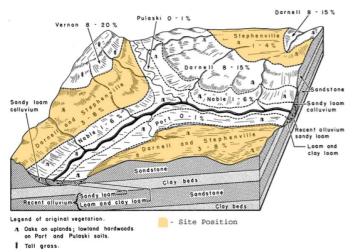


Figure 2. Sandy Savannah Block Diagram

Table 2. Representative physiographic features

_	
Landforms	(1) Hills > Hill (2) Hills > Cuesta
Runoff class	Medium to high

Elevation	500–1,500 ft
Slope	5–15%
Aspect	Aspect is not a significant factor

Table 3. Representative physiographic features (actual ranges)

Runoff class	Low to very high
Elevation	Not specified
Slope	1–25%

Climatic features

Climate is moist sub-humid with annual precipitation ranging from 30 to 45 inches. There will be noticeable differences in precipitation and temperatures from north to south and east to west. The most intense rainfall occurs in late spring and early summer while warm season vegetation is growing rapidly. Frost free and freeze free days increase from north to south. Precipitation increases from west to east.

Table 4. Representative of	climatic	features
----------------------------	----------	----------

Frost-free period (characteristic range)	166-191 days
Freeze-free period (characteristic range)	196-209 days
Precipitation total (characteristic range)	37-42 in
Frost-free period (actual range)	166-195 days
Freeze-free period (actual range)	193-229 days
Precipitation total (actual range)	34-45 in
Frost-free period (average)	179 days
Freeze-free period (average)	205 days
Precipitation total (average)	40 in

Climate stations used

- (1) SEDAN [USC00147305], Sedan, KS
- (2) BARTLESVILLE F P FLD [USW00003959], Bartlesville, OK
- (3) PAWHUSKA [USC00346935], Pawhuska, OK
- (4) BARNSDALL [USC00340535], Barnsdall, OK
- (5) MANNFORD 6 NW [USC00345522], Cleveland, OK
- (6) BRISTOW [USC00341144], Bristow, OK
- (7) CHANDLER [USC00341684], Chandler, OK
- (8) NORMAN 3SSE [USC00346386], Norman, OK
- (9) ADA [USC00340017], Ada, OK
- (10) SEMINOLE [USC00348042], Seminole, OK
- (11) CHICKASHA EXP STATION [USC00341750], Chickasha, OK
- (12) ANADARKO 3 E [USC00340224], Anadarko, OK
- (13) LINDSAY 2 W [USC00345216], Lindsay, OK
- (14) DUNCAN [USC00342660], Duncan, OK
- (15) STILLWATER 5 WNW [USW00053927], Stillwater, OK

Influencing water features

These upland site is not associated with any wetland or riparian system.

Wetland description

Figure 7–1	The hydrologic cycle with factors that affect hydrologic processes
×	
	Precipitation dynamics
	Solar radiation
↑ Transpiratio	n 7/
	aporation water from Absorption by roots Deep drainage Deep drainage Dee

Soil features

Representative soils: Bartlesville, Littleaxe, Newalla, Niotaze, Stephenville, and Konowa.

These are deep to moderately deep, permeable, medium textured soils formed over sandstone and shale. These particular soils are very susceptible to severe water and wind erosion unless good cover is maintained.

Soils are mapped for each county within the MLRA. Mapunits are representations of the major soil series component(s) and named accordingly. Each Mapunit is spatially represented on a digital soils map as polygons of different shapes and sizes. Within these Mapunits, there are often minor soil series components included. These minor components are soils that occur within a Mapunit polygon but are of small extent (15% or less of the Mapunit area). However, it is difficult to separate these minor soils spatially due to the scale of soil mapping.

Ecological sites are correlated at the component level of the soil survey. Therefore, a single Mapunit may contain multiple Ecological Sites just as it may contain multiple soil components. This is important to understand when investigating soils and Ecological Sites. A soil survey Mapunit may be correlated to a single Ecological Site based on the major component; however, there may be inclusional areas of additional Ecological Sites which are correlated to the minor components of that particular soil Mapunit.

Table 5.	. Representative soil features	
----------	--------------------------------	--

•	
Parent material	(1) Residuum–sandstone and shale
Surface texture	(1) Fine sandy loam (2) Loamy fine sand
Drainage class	Somewhat poorly drained to excessively drained
Permeability class	Very slow to moderately rapid
Depth to restrictive layer	24 in
Soil depth	24 in
Surface fragment cover <=3"	0–10%
Surface fragment cover >3"	0–10%
Available water capacity (0-40in)	2–6.1 in
Electrical conductivity (0-40in)	0–2 mmhos/cm
Sodium adsorption ratio (0-40in)	0–8

Soil reaction (1:1 water) (0-40in)	5.5–7.5
Subsurface fragment volume <=3" (Depth not specified)	0–60%
Subsurface fragment volume >3" (Depth not specified)	0–21%

Table 6. Representative soil features (actual values)

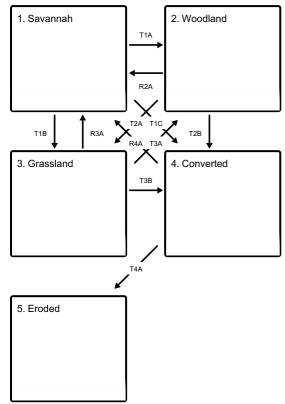
Drainage class	Not specified
Permeability class	Not specified
Depth to restrictive layer	Not specified
Soil depth	Not specified
Surface fragment cover <=3"	Not specified
Surface fragment cover >3"	Not specified
Available water capacity (0-40in)	Not specified
Electrical conductivity (0-40in)	Not specified
Sodium adsorption ratio (0-40in)	Not specified
Soil reaction (1:1 water) (0-40in)	4.5–8.4
Subsurface fragment volume <=3" (Depth not specified)	Not specified
Subsurface fragment volume >3" (Depth not specified)	Not specified

Ecological dynamics

The reference state is an oak savannah interspersed with tallgrasses, forbs and shrubs. The vegetation is predominately tallgrasses and midgrasses, consisting of big bluestem, little bluestem, Indiangrass and switchgrass. Secondary grasses include purpletop, sand lovegrass, purple lovegrass, sand dropseed Canada wildrye and Virginia wildrye. Overstory trees of post oak, blackjack oak and various species of hickory formed a canopy of approximately 15 to 20 percent. However, it is important to note that woody canopy has always varied from 70+ to <10 in a mosaic pattern.Common species of shrubs are smooth sumac, skunkbush, and leadplant. Major legumes include Illinois bundleflower, sessile tickclover, Illinois tickclover, catclaw sensitivebrier, Virginia tephrosia, slender lespedeza, Steuve's lespedeza and roundhead lespedeza.

Grazing and fire are critical elements in maintaining a balance of vegetation types. Without periodic burning, woody plants gradually thicken, further reducing the amount of herbaceous vegetation in the understory. The estimated historical fire return in 2-5 years (Frost 1998). The lack of fire has changed much of the historical ecosystem. On some savannah locations, tree canopies have thickened to the point that only sparse amounts of shade tolerant herbaceous plants remain in the understory. Long term overgrazing by domestic animals, primarily cattle, usually results in a decrease of the tallgrasses and more cattle-palatable forbs and shrubs. These plants are gradually replaced by less palatable plants for domestic grazing stock, but not necessarily less desirable plants for other management goals.

In other areas, eastern redcedar has invaded the site. These evergreen trees can form an understory component of varying heights and density, but if left unchecked eastern redcedar will eventually completely overtake the site rendering it unproductive and uninhabitable for most animal and bird species. Considerations should be taken regarding removal eastern redcedar before or during canopy thinning treatments to avoid a surge after thinning.


Variations in the timing and intensity of fire can produce different effects on both structure and amount of both

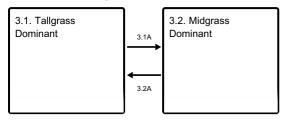
woody and herbaceous vegetation. Summer burns, especially in July and August, have the ability to cause changes in woody structure and composition. Late winter and spring fires tend to be effective in keeping smaller woody plants and seedlings in check, but have only minor effects on more mature woody species. Heavy grazing reduces fuel load and, therefore, minimizes the intensity and the effectiveness of fires.

A large number of acres of Sandy Loam Savannah sites have had an attempt at clearing woody species through chemical herbicide use. Mid-century use of 2,4,5-T and other similar chemicals led to large areas of timber kill. However, many of these areas re-sprouted into thicker and denser "scrub oak" mottes. More recently, tebuthiuron pellets have been used in attempts to open up more grazable acres for cattle production. Some have had success, however, many times the canopy release leads to secondary invasions by eastern redcedar, sericea lespedeza, and broomsedge bluestem. Careful planning and consideration should be used before attempting chemical application in the cross timbers.

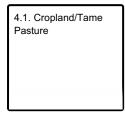
State and transition model

Ecosystem states

- T1A No brush management, No fire
- T1B Chemical brush management, Prescribed burning
- T1C Land clearing, Tillage, Seeding
- R2A Selective thinning, Prescribed burning, Prescribed grazing
- T2A Chemical brush management, Prescribed burning, Prescribed grazing
- T2B Land clearing, Tillage, Seeding
- R3A Prescribed burning 4 year+ return, Prescribed grazing
- T3A No fire, No brush management
- T3B Tillage, Seeding
- R4A Range planting, Prescribed burning 4+ year interval
- T4A Soil erosion


State 1 submodel, plant communities

1.1. Tallgrass Savannah(Reference Community)	1.1A	1.2. Midgrass Savannah
	↓ 1.2A	


State 2 submodel, plant communities

2.1. Tree/Shrub Dominant	2.1A	2.2. Closed Canopy Woodland
	2.2A	

State 3 submodel, plant communities

State 4 submodel, plant communities

State 1 Savannah

This is the Reference state for this ecological site. It represents the historical variability of plant communities on this site under the natural disturbance regime.

Characteristics and indicators. This ecological state consists of native grasses and forbs with an overstory of oak trees. The average canopy coverage of tree species ranges from 15-30%.

Resilience management. This state requires periodic fire every 2-5 years to maintain the relationship between woody and herbaceous species.

Dominant plant species

- post oak (Quercus stellata), tree
- blackjack oak (Quercus marilandica), tree
- black hickory (Carya texana), tree
- winged sumac (Rhus copallinum), shrub
- coralberry (Symphoricarpos orbiculatus), shrub
- big bluestem (Andropogon gerardii), grass
- little bluestem (Schizachyrium scoparium), grass
- Indiangrass (Sorghastrum nutans), grass
- goldenrod (Solidago), other herbaceous
- sunflower (Helianthus), other herbaceous

Community 1.1 Tallgrass Savannah(Reference Community)

The general aspect of the vegetation is an oak savannah. The major plants are tallgrasses and midgrasses with a scattered overstory of trees. Big bluestem, little bluestem, Indiangrass and switchgrass are the dominant grasses and comprise 50 to 60 percent of the vegetation by weight. Secondary grasses include purpletop, sand lovegrass, purple lovegrass, sand dropseed Canada wildrye and Virginia wildrye. Post oak, blackjack oak and hickory are the major trees. Common species of shrubs are smooth sumac, skunkbush, and leadplant. Combined woody species form an overstory of about 20 to 40 percent. The site supports a large number of forbs and legumes. Major legumes include Illinois bundleflower, sessile tickclover, Illinois tickclover, catclaw sensitivebrier, Virginia tephrosia, slender lespedeza, Stuves' lespedeza and roundhead lespedeza. More abundant forbs are Maximilian sunflower, hairy sunflower, pale echinacea, fringeleaf ruellia, heathaster and several species of goldenrod. Over the years this plant community has been maintained by periodic fires and moderate grazing.

Resilience management. This community relies on periodic fire every 2-5 years in order to maintain the structure and composition of species. Abusive grazing practices can both alter herbaceous species composition and reduce fuel loads needed for effective use of fire. Without fire, woody species can dominate the site reducing hydrological function and energy flow on the site.

Dominant plant species

- post oak (Quercus stellata), tree
- blackjack oak (Quercus marilandica), tree
- black hickory (Carya texana), tree
- coralberry (Symphoricarpos orbiculatus), shrub
- smooth sumac (Rhus glabra), shrub
- big bluestem (Andropogon gerardii), grass
- little bluestem (Schizachyrium scoparium), grass
- goldenrod (Solidago), other herbaceous
- sunflower (Helianthus), other herbaceous

Table 7. Annual production by plant type

Plant Type	Low (Lb/Acre)	Representative Value (Lb/Acre)	High (Lb/Acre)
Grass/Grasslike	2089	2972	3854
Tree	811	903	1046
Forb	200	400	550
Shrub/Vine	100	125	150
Total	3200	4400	5600

Figure 11. Plant community growth curve (percent production by month). OK0003, Warm season tallgrasses, forbs, and a few woody species.

Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	2	6	9	21	24	14	6	11	4	2	1

Community 1.2 Midgrass Savannah

Within this community phase, the more palatable tallgrasses and forbs have decreased. They have been replaced by species such as tall dropseed, silver bluestem, and sideoats grama. The less palatable annual forbs, such as broomweed and western ragweed have increased also. Total herbaceous production may remain the same as the reference community, however, the composition has been altered significantly. In this community, midgrass species are roughly equal to tallgrass species in composition by weight.

Resilience management. The communities of the reference state are quite resilient. However, without periodic fire, this community may be at risk of transitioning to a woody state. Abusive grazing practices may also contribute to this risk by reducing fuel loads need to produce an effective fire.

Figure 12. Plant community growth curve (percent production by month). OK0003, Warm season tallgrasses, forbs, and a few woody species.

Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	2	6	9	21	24	14	6	11	4	2	1

Pathway 1.1A Community 1.1 to 1.2

Tallgrass Savannah(Reference Community)

Midgrass Savannah

Abusive grazing practices which exceed carrying capacity without adequate rest/recovery will result in a quick reduction of tall grass species and palatable forbs. Without some type of rest for these plants, constant defoliation will reduce the vigor creating an opportunity for less palatable plants to out-compete them for resources.

Context dependence. While drought can exacerbate this pathway, it is often grazing that is the main driver.

Pathway 1.2A Community 1.2 to 1.1

Midgrass Savannah

Community)

Through a properly implemented prescribed grazing system that includes a balanced stocking rate and some degree of growing season rest, this community phase may be reverted to the reference plant community. The length of deferment and time required for this restoration is dependent upon length of abusive grazing, precipitation and management system used.

State 2 Woodland

This vegetative state is composed of an overstory of trees and shrubs that will slowly eliminate most herbaceous vegetation from the plant community if left unchecked.

Characteristics and indicators. The major species are post oak and black jack oak. Woody species that were historically suppressed by fire have increased. These include hackberry, elms and greenbriar.

Resilience management. There is a high potential for encroachment by eastern redcedar in this ecological state if proper management is not applied.

Dominant plant species

- post oak (Quercus stellata), tree
- blackjack oak (Quercus marilandica), tree
- American elm (Ulmus americana), tree
- black hickory (Carya texana), tree
- eastern poison ivy (Toxicodendron radicans), shrub
- Virginia creeper (Parthenocissus quinquefolia), shrub
- coralberry (Symphoricarpos orbiculatus), shrub
- saw greenbrier (Smilax bona-nox), shrub
- sedge (Carex), grass
- poverty oatgrass (Danthonia spicata), grass
- purpletop tridens (*Tridens flavus*), grass
- wildrye (*Elymus*), grass
- goldenrod (Solidago), other herbaceous
- crownbeard (Verbesina), other herbaceous

Community 2.1 Tree/Shrub Dominant

This plant community is a moderately closed oak savannah with an understory of mid and tallgrasses. The absence of fire has allowed woody species to increase in abundance. The overstory tree canopy ranges from 40 to 60 percent. The competition from the increased canopy has led to a decrease in herbaceous understory plants. Little bluestem is the dominant grass in the understory. Other grasses include big bluestem, Indiangrass, switchgrass, purpletop, purple lovegrass, Scribners' panicum, Virginia wildrye and Canada wildrye. More abundant legumes are slender lespedeza. Illinois tickclover, catclaw sensitivebrier, trailing wildbean and showy partridgepea. Hairy sunflower, heathaster, western ragweed, fleabane and goldenrods are the more common forbs. Woody species that were historically suppressed by fire have increased, including hackberry and elm species. Low growing woody species such as buckbrush, flameleaf sumac, blackberry and greenbriar have increased and are common on the site.

Figure 13. Plant community growth curve (percent production by month). OK0006, MLRA 84A, Oak/Cedar. Mature oak overstory .

Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2	3	5	10	18	25	10	5	8	5	4	5

Community 2.2 Closed Canopy Woodland

This plant community is characterized by oak trees and other trees forming an overstory canopy of 65 to 85 percent. Understory vegetation is sparse and composed primarily of shade tolerant grasses, forbs and low growing woody species. Grasses and grasslike plants include Scribners panicum, Virginia wildrye, sedges, arrowfeather threeawn, fringeleaf paspalum, little bluestem, broomsedge bluestem and purpletop. Major forbs include goldenrods, pussytoes, heathaster, blue aster, sageworts, tickclovers, lespedezas and showy partridgepea. Woody plants in the understory include blackberry, buckbrush, eastern redcedar, redbud and seedlings and immature plants of blackjack, post oak, elm and hackberry.

Figure 14. Plant community growth curve (percent production by month). OK0006, MLRA 84A, Oak/Cedar. Mature oak overstory .

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2	3	5	10	18	25	10	5	8	5	4	5

Pathway 2.1A Community 2.1 to 2.2

Tree/Shrub Dominant

Closed Canopy Woodland

In the absence of fire or brush managment, the trees and shrubs in this plant community will continue to outcompete the herbaceous vegetation for sunlight and resources. With time, it will become a closed canopy woodland community.

Pathway 2.2A Community 2.2 to 2.1

Closed Canopy Woodland

Tree/Shrub Dominant

Through a program of brush management and prescribed fire, the closed canopy plant community can be reverted to the tree/shrub dominant community. This pathway can be accomplished by opening the canopy and allowing more sunlight to reach the soil surface. Special consideration should be taken if eastern redcedar is present in high amounts in the understory as they will be very competitive once the canopy is opened.

State 3 Grassland

In this state, the shallow savannah has been transitioned to an open grassland dominated by tallgrasses and forbs.

Characteristics and indicators. This state has very low canopy of trees due to chemical and/or mechanical brush management.

Resilience management. Without proper management, this state may return to a savannah state within a short time. It is important to note that maintaining this state will require significant inputs and the transition may take many years. A large number of acres of Sandy Loam Savannah sites have had an attempt at clearing woody species through chemical herbicide use. Mid-century use of 2,4,5-T and other similar chemicals led to large areas of timber kill. However, many of these areas resprouted into thicker and denser "scrub oak" mottes. More recently, tebuthiuron pellets have been used in attempts to open up more grazable acres for cattle production. Some have had success, however, many times the canopy release leads to secondary invasions by eastern redcedar, sericea lespedeza, and broomsedge bluestem. Careful planning and consideration should be used before attempting chemical application in the cross timbers.

Dominant plant species

- little bluestem (Schizachyrium scoparium), grass
- big bluestem (Andropogon gerardii), grass
- broomsedge bluestem (Andropogon virginicus), grass

Community 3.1 Tallgrass Dominant

This community is dominated by tallgrass species such as little bluestem, big bluestem, switchgrass, and indiangrass. Some perenial forbs may persist, depending on the herbicide used on the oak trees. Grazing management plays a key role in the maintenance of this plant community. If tebuthiuron pellets are used to control woody species, it is important to remember that there is a period of years following treatment that it is inadvisable to burn. Therefore special caution should be taken when stocking pastures to ensure that the tallgrass community remains dominant. Other invaders such as sericia lespedeza and eastern redcedar also thrive once released from the oak canopy.

Figure 15. Plant community growth curve (percent production by month). OK0009, Native Warm-Season Grasses. The growing season for warm season(C4) grasses in this region runs from last frost to first frost with peak production from mid April through mid July. The curve listed below is intended to be a representative of normal growing conditions. The monthly production pecentages can vary from year to year deopending upon temperature and rainfall variatioins..

Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	0	3	9	25	28	15	5	10	5	0	0

Community 3.2 Midgrass Dominant

This community is dominated by less palatable midgrass species. Abusive grazing has resulted in the decline of palatable tallgrasses and forbs. Little bluestem will persist, along with dropseed species, silver bluestem, native lovegrasses, sideoats grama, and broomsedge bluestem(in eastern portions of MLRA). Annual forbs increase in abundance. Total site production may be similar to community 3.1 but composition has changed significantly.

Figure 16. Plant community growth curve (percent production by month). OK0009, Native Warm-Season Grasses. The growing season for warm season(C4) grasses in this region runs from last frost to first frost with peak production from mid April through mid July. The curve listed below is intended to be a representative of normal growing conditions. The monthly production pecentages can vary from year to year deopending upon temperature and rainfall variatioins..

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	0	3	9	25	28	15	5	10	5	0	0

Pathway 3.1A Community 3.1 to 3.2

Tallgrass Dominant

Midgrass Dominant

Abusive grazing practices exceeding carrying capacity without adequate rest/recovery can push this tallgrass dominated plant community towards a community that is dominated by less palatable midgrass species.

Pathway 3.2A Community 3.2 to 3.1

Midgrass Dominant

Tallgrass Dominant

Through a properly implemented prescribed grazing system that includes some degree of growing season rest, this community phase may be reverted to the reference plant community. The length of deferment and time required for this restoration is dependent upon precipitation and management system used.

State 4 Converted

This state is the result of a change in land use. Native vegetation has been tilled and crops or introduced perennial vegetation has been planted.

Resilience management. This state is not likely to return to reference conditions due to the alteration of soil structure, chemistry and hydrology. However, if abandoned, the site may become invaded by woody species and transition to something similar to the woodland state.

Dominant plant species

Bermudagrass (Cynodon dactylon), grass

Community 4.1 Cropland/Tame Pasture

With brush management, tillage, seeding and/or sprigging, this site can support a variety of native and non-native plant communities. Good grazing management and, occasionally, reseeding may be needed to re-establish and maintain desired plant communities. Once tillage has occured, physical and biological soil properties have been significantly altered. The return of this state to the reference state may not be achievable. However, range seeding, prescribed fire and proper grazing management can restore a plant community similar the the reference state.

State 5 Eroded

This state is the result of water erosion over bare soil.

Characteristics and indicators. Most of the "A" horizon of the soil profile has been displaced. The remaining subsoil is very low in fertility. Some native grasses and forbs will persist in this state, however, production is greatly reduced.

Resilience management. Site specific evaluations are required on eroded soils in order to determine what restoration options are feasible.

Dominant plant species

- silver beardgrass (Bothriochloa laguroides), grass
- threeawn (Aristida), grass

Transition T1A State 1 to 2

In the absence of fire or brush management, this savannah state will transition to a woodland state of tree/shrub dominance.

Constraints to recovery. Overall woody infestation level and time since fire will determine level of restoration needed.

Transition T1B State 1 to 3

Through intensive chemical brush management, the savannah state may be transitioned to a grassland state dominated by tallgrasses or midgrasses with very few trees and shrubs. It is important to note that maintaining this state will require significant inputs.

Context dependence. A large number of acres of Sandy Loam Savannah sites have had an attempt at clearing woody species through chemical herbicide use. Mid-century use of 2,4,5-T and other similar chemicals led to large areas of timber kill. However, many of these areas resprouted into thicker and denser "scrub oak" mottes. More recently, tebuthiuron pellets have been used in attempts to open up more grazable acres for cattle production. Some have had success, however, many times the canopy release leads to secondary invasions by eastern redcedar, sericea lespedeza, and broomsedge bluestem. Careful planning and consideration should be used before attempting chemical application in the cross timbers.

Conservation practices

Brush Management

Transition T1C State 1 to 4

Through land clearing tillage and seeding the sandy savannah site may be converted to cropland or tame pasture

Context dependence. Once tillage has occurred, physical and biological soil properties have been significantly altered. The return of this state to the reference state may not be achievable.

Conservation practices

Land Clearing

Restoration pathway R2A State 2 to 1

Implementing a brush management plan that includes mechanical thinning and the use of prescribed fire can restore the woodland state to an open canopy savannah state. Fire alone can help restore the site, however, this may take many years to accomplish.

Context dependence. Overall woody encroachment level and time since fire have an impact on restoration efforts.

Conservation practices

Brush Management
Prescribed Burning
Prescribed Grazing

Transition T2A State 2 to 3

Through intensive chemical brush management, the woodland state may be transitioned to a grassland state dominated by tallgrasses or midgrasses with very few trees and shrubs. It is important to note that maintaining this state will require significant inputs. A large number of acres of Sandy Loam Savannah sites have had an attempt at clearing woody species through chemical herbicide use. Mid-century use of 2,4,5-T and other similar chemicals led to large areas of timber kill. However, many of these areas resprouted into thicker and denser "scrub oak" mottes. More recently, tebuthiuron pellets have been used in attempts to open up more grazable acres for cattle production. Some have had success, however, many times the canopy release leads to secondary invasions by eastern redcedar, sericea lespedeza, and broomsedge bluestem. Careful planning and consideration should be used before attempting chemical application in the cross timbers.

Transition T2B State 2 to 4

Through land clearing tillage and seeding the sandy savannah site may be converted to cropland or tame pasture land use.

Constraints to recovery. Once tillage has occurred, physical and biological soil properties have been significantly altered. The return of this state to the reference state may not be achievable.

Conservation practices

Land Clearing

Restoration pathway R3A State 3 to 1

This state may be restored to the savannah state with the exclusion of chemical brush management.

Context dependence. A prescribed fire program must be implemented to control resprouting woody species and maintain an open savannah canopy. Otherwise, the site could transition to the woody dominated state. This restoration may take many years.

Conservation practices

Prescribed Burning Prescribed Grazing

Transition T3A State 3 to 2

In the absence of fire or brush management, this grassland state will transition to a woodland state of tree/shrub dominance.

Transition T3B State 3 to 4

Through tillage and seeding the grassland state may be converted to cropland or tame pasture land use.

Constraints to recovery. Once tillage has occurred, physical and biological soil properties have been significantly altered. The return of this state to the reference state may not be achievable.

Restoration pathway R4A State 4 to 1

The potential for this converted state to revert to another state varies greatly from site to site. It is dependent upon multiple factors including length of time in production, soil integrity, planned restoration methods, and precipitation patterns. The return of soil properties to reference condition may not be achievable, post cultivation. Introduced pasture species are also very difficult to eradicate once established. Consult with local conservationists to develop a site specific restoration plan.

Transition T4A State 4 to 5

If this ecological site is subjected to soil disturbances such as land clearing, ripping, or plowing that leave large amounts of exposed soil, the site may become very susceptible to water erosion. Once the "A" horizon has been displace through erosion, this site has transitioned to an Eroded Sate.

Additional community tables

Table 8. Community 1.1 plant community composition

Group	Common Name	Symbol	Scientific Name	Annual Production (Lb/Acre)	Foliar Cover (%)
Grass	/Grasslike	-			
1	Tallgrasses			746–1375	
	big bluestem	ANGE	Andropogon gerardii	543–1000	_
	switchgrass	PAVI2	Panicum virgatum	102–188	_
	Indiangrass	SONU2	Sorghastrum nutans	102–188	_
2	Little Bluestem	•		678–1250	
	little bluestem	SCSC	Schizachyrium scoparium	679–1250	_
3	Mid/Shortgrasses	•		305–563	
	dropseed	SPORO	Sporobolus	102–188	_
	purpletop tridens	TRFL2	Tridens flavus	68–125	_
	beaked panicgrass	PAAN	Panicum anceps	68–125	_
	sand lovegrass	ERTR3	Eragrostis trichodes	68–125	_
	purple lovegrass	ERSP	Eragrostis spectabilis	34–63	_
	cylinder jointtail grass	COCY	Coelorachis cylindrica	34–63	_
	broomsedge bluestem	ANVI2	Andropogon virginicus	34–63	_
	sideoats grama	BOCU	Bouteloua curtipendula	34–63	_
	arrowfeather threeawn	ARPUP4	Aristida purpurascens var. purpurascens	20–38	_
	marsh muhly	MURA	Muhlenbergia racemosa	20–38	_
	splitbeard bluestem	ANTE2	Andropogon ternarius	20–38	_
	green sprangletop	LEDU	Leptochloa dubia	14–25	_
	hairawn muhly	MUCA2	Muhlenbergia capillaris	14–25	_
	bearded skeletongrass	GYAM	Gymnopogon ambiguus	14–25	_
	blue grama	BOGR2	Bouteloua gracilis	14–25	_
	hairy grama	BOHI2	Bouteloua hirsuta	14–25	_
	churchmouse threeawn	ARDI4	Aristida dichotoma	7–13	_
	gummy lovegrass	ERCU	Eragrostis curtipedicellata	7–13	_
	nimblewill	MUSC	Muhlenbergia schreberi	7–13	_
	puffsheath dropseed	SPNE2	Sporobolus neglectus	7–13	_
4	Cool-Season Grassse	s		360–666	

	Virginia wildrye	ELVI3	Elymus virginicus	102–188	-
	Canada wildrye	ELCA4	Elymus canadensis	68–125	_
	fall rosette grass	DIWI5	Dichanthelium wilcoxianum	34–63	_
	Texas bluegrass	POAR	Poa arachnifera	34–63	_
	sedge	CAREX	Carex	34–63	_
	slimleaf panicgrass	DILI2	Dichanthelium linearifolium	34–63	_
	Scribner's rosette grass	DIOLS	Dichanthelium oligosanthes var. scribnerianum	34–63	_
	roundseed panicgrass	DISPS3	Dichanthelium sphaerocarpon var. sphaerocarpon	20–38	_
Forb		•	-	• •	
5	Forbs			125–344	
	Maximilian sunflower	HEMA2	Helianthus maximiliani	50–138	_
	compassplant	SILA3	Silphium laciniatum	50–138	_
	ashy sunflower	HEMO2	Helianthus mollis	25–69	_
	stiff sunflower	HEPA19	Helianthus pauciflorus	25–69	-
	muck sunflower	HESI2	Helianthus simulans	25–69	-
	cobaea beardtongue	PECO4	Penstemon cobaea	25–69	-
	prairie fleabane	ERST3	Erigeron strigosus	25–69	_
	pitcher sage	SAAZG	Salvia azurea var. grandiflora	25–69	_
	bluejacket	TROH	Tradescantia ohiensis	25–69	_
	Baldwin's ironweed	VEBA	Vernonia baldwinii	20–55	_
	button eryngo	ERYU	Eryngium yuccifolium	20–55	_
	pale purple coneflower	ECPA	Echinacea pallida	20–55	_
	flowering spurge	EUCO10	Euphorbia corollata	20–55	_
	Appalachian mountainmint	PYFL	Pycnanthemum flexuosum	20–55	-
	rough coneflower	RUGR	Rudbeckia grandiflora	15–41	-
	fringeleaf wild petunia	RUHU	Ruellia humilis	15–41	-
	Missouri goldenrod	SOMI2	Solidago missouriensis	15–41	-
	devil's bite	LISC2	Liatris scariosa	15–41	-
	tall thoroughwort	EUAL3	Eupatorium altissimum	15–41	-
	butterfly milkweed	ASTU	Asclepias tuberosa	15–41	-
	Cuman ragweed	AMPS	Ambrosia psilostachya	15–41	-
	pussytoes	ANTEN	Antennaria	10–28	-
	common yarrow	ACMI2	Achillea millefolium	10–28	_
	soft agrimony	AGPU	Agrimonia pubescens	10–28	_
	whorled milkweed	ASVE	Asclepias verticillata	10–28	-
	Deane's milkvetch	ASDE	Astragalus deanei	10–28	_
	licorice bedstraw	GACI2	Galium circaezans	10–28	
	cudweed	GNAPH	Gnaphalium	10–28	-
	Nuttall's prairie parsley	PONU4	Polytaenia nuttallii	10–28	_
	hairy hawkweed	HILO2	Hieracium longipilum	10–28	
	showy goldenrod	SOSP2	Solidago speciosa	10–28	_
	browneyed Susan	RUTR2	Rudbeckia triloba	10–28	_

	blackeyed Susan	RUHI2	Rudbeckia hirta	5–14	_
6	Legumes			75–206	
-	partridge pea	CHFA2	Chamaecrista fasciculata	25–69	_
	white prairie clover	DACA7	Dalea candida	25–69	_
	purple prairie clover	DAPUP	Dalea purpurea var. purpurea	25–69	
	Illinois bundleflower	DEIL	Desmanthus illinoensis	25–69	_
	sessileleaf ticktrefoil	DESE	Desmodium sessilifolium	25-69	_
	roundhead lespedeza	LECA8	Lespedeza capitata	25–69	_
	tall lespedeza	LEST5	Lespedeza stuevei	25–69	_
	slender lespedeza	LEVI7	Lespedeza virginica	25–69	_
	Virginia tephrosia	TEVI	Tephrosia virginiana	25-69	
	violet lespedeza	LEVI6	Lespedeza violacea	20-55	
	blue wild indigo	BAAUM	Baptisia australis var. minor	15-41	
	Atlantic pigeonwings	CLMA4	Clitoria mariana	10-28	
Shru	b/Vine			10-20	
7	Shrubs			100–150	
'	leadplant	AMCA6	Amorpha canescens	33–50	
	Jersey tea	CEHE	Ceanothus herbaceus	33–50	
	dwarf chinquapin oak	QUPR	Quercus prinoides	33–50	
	winged sumac	RHCO	Rhus copallinum	33–50	
	smooth sumac	RHGL	Rhus glabra	33–50	
	skunkbush sumac	RHTR	Rhus trilobata	33–50	
	Carolina rose	ROCA4	Rosa carolina	33–50	
	blackberry	RUBUS	Rubus	33–50	
	saw greenbrier	SMBO2	Smilax bona-nox	33–50	
	coralberry	SYOR	Symphoricarpos orbiculatus	33–50	_
	western poison ivy	TORY	Toxicodendron rydbergii	33–50	
	grape	VITIS	Vitis	33–50	_
Tree	grape	1113	Vilis	33-30	_
8	Trees			600–800	
0	post oak	QUST	Quercus stellata	462–615	
	blackjack oak	QUMA3	Quercus marilandica	185–246	
	black hickory	CATE9		92–123	
	-	CATE9 CACO15	Carya texana	46–61	_
	bitternut hickory	CACO15 CAOV2	Carya cordiformis	46-61	
	shagbark hickory		Carya ovata		_
	eastern redbud	CECA4	Cercis canadensis	28–37	_
	common hackberry	CEOC	Celtis occidentalis	28–37	_
	American elm	ULAM	Ulmus americana	28–37	
	Oklahoma plum	PRGR	Prunus gracilis	28–37	
	white ash	FRAM2	Fraxinus americana	28–37	_
	eastern redcedar	JUVI	Juniperus virginiana	18–25	-
	common persimmon	DIVI5	Diospyros virginiana	18–25	_

Table 9. Community 1.1 forest overstory composition

Common Name	Symbol	Scientific Name	Nativity	Height (Ft)		Diameter (In)	Basal Area (Square Ft/Acre)
Tree							
post oak	QUST	Quercus stellata	Native	_	10–25	_	-
blackjack oak	QUMA3	Quercus marilandica	Native	_	10–25	_	-
black hickory	CATE9	Carya texana	Native	-	1–10	_	-

Animal community

This plants on this site have value for grazing cattle. They also provide cover and food for many species of wildlife including whitetail deer and bobwhite quail. Coyote, red fox, squirrel, cottontail rabbit, opossum and raccoon are common. Numerous song birds and woodpeckers may be found on the site.

Hydrological functions

These upland sites may shed some water via runoff during heavy rain events. The presence of good ground cover and deep rooted grasses can help facilitate infiltration and reduce sediment loss. As ground cover decreases, sediment loss may increase.

Many of these soils maintain a shallow water table during the dormant season when water remains perched over the sandstone or shale bedrock. This water may discharge downslope at areas of exposed bedrock.

In the woody state, trees and shrubs may intercept a majority of the rainfall. There may be some enter the soil through stemflow, however, much of the moisture is intercepted in the canopy and lost via evaporation. This can alter the overall cycling of water and other nutrients.

Recreational uses

Hunting, Camping, Hiking, Bird watching, Photography, Horseback Riding.

Wood products

There is not much "marketable" timber on these sites. Some areas are sources for firewood.

Other products

NA

Other information

NA

Inventory data references

Clipping data and other observations on file in the Oklahoma NRCS State Office: Suite 206 100 USDA Stillwater, Oklahoma 74074

The original information presented here was derived from field observations of Dr. Jack Eckroat, in the summer of 2007, correlated to office files and old Rangesite Technical Descriptions (1961 USDA/SCS). Species compositions are as complete as possible. Production will vary by species from within years, from year to year, and from site to site.

Range-417 collections and NRI data were used to validate production and species estimates.

Type locality

Location 1: Osage County, OK						
v	Osage County, Oklahoma; 14 miles northeast of Pawhuska; about 2,300 feet south and 650 feet east of the NW corner of Sec. 23, T. 27 N, R. 10 E					

References

Bestelmeyer, B., J.R. Brown, K.M. Havstad, B. Alexander, G. Chavez, and J.E. Herrick. 2003. Development and Use of State and Transition Models for Rangelands. Jornal of Range Management 56:114–126.

Frost, C.C. 1998. Presettlement Fire Frequency Regimes of the United States: A First Approximation. Plant Conservation Program. North Carolina Department of Agriculture and Consumer Services, Raleigh, NC.

Other references

Bestelmeyer, B. T., Brown, J. R., Havstad, K. M., Alexander, R., Chavez, G., & Herrick, J. E. (2003). Development and use of state-and-transition models for rangelands. Journal of Range Management, 114-126.

Frost, Cecil C. 1998. Presettlement fire frequency regimes of the United States: a first approximation. Proceedings: Twentieth Annual Tall Timbers Fire Ecology Conference. Tallahassee, FL: Tall Timbers Research Station. pp. 70-81.

Fuhlendorf, S. D., Engle, D. M., Kerby, J. A. Y., & Hamilton, R. (2009). Pyric herbivory: rewilding landscapes through the recoupling of fire and grazing. Conservation Biology, 23(3), 588-598.

Harlan, J. R. (1957). Grasslands of Oklahoma. National Soil Information System (NASIS). Accessed 2013

Shantz, H. L. (1923). The natural vegetation of the Great Plains region. Annals of the Association of American Geographers, 13(2), 81-107.

Shiflet, T. N. (1994). Rangeland cover types of the United States (Vol. 152). Denver, CO, USA: Society for Range Management.

Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. Available online at http://websoilsurvey.nrcs.usda.gov/. Accessed [5/5/2014].

USDA NRCS Plants Database. Online.

USDA-SCS Oklahoma Range Site Descriptions(1960s)

Contributors

Edits by Colin Walden, Soil Survey Region 9, Stillwater, OK Dr. Jack Eckroat, Grazing Lands Specialist, NRCS, Oklahoma

Approval

Bryan Christensen, 9/21/2023

Acknowledgments

Site Development and Testing Plan:

Future work, as described in a Project Plan, to validate the information in this Provisional Ecological Site Description is needed. This will include field activities to collect low, medium and high intensity sampling, soil correlations, and analysis of that data. Annual field reviews should be done by soil scientists and vegetation specialists. A final field review, peer review, quality control, and quality assurance reviews of the ESD will be needed to produce the final document. Annual reviews of the Project Plan are to be conducted by the Ecological Site Technical Team.

Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

Author(s)/participant(s)	Colin Walden, Brandon Reavis
Contact for lead author	100 USDA Suite 206 Stillwater, Oklahoma 740740
Date	05/28/2020
Approved by	Bryan Christensen
Approval date	
Composition (Indicators 10 and 12) based on	Foliar Cover

Indicators

- 1. Number and extent of rills: No rills present due to adequate ground cover.
- 2. Presence of water flow patterns: Very few water flow patterns. Only in understory following intense storms.
- 3. Number and height of erosional pedestals or terracettes: No pedestals or terracettes present on site.
- 4. Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground): There is some variability, but it should average less than 10% bare ground on this site. Bare areas are small and not connected.
- 5. Number of gullies and erosion associated with gullies: No gully erosion on site.
- 6. Extent of wind scoured, blowouts and/or depositional areas: No wind erosion on site.
- 7. Amount of litter movement (describe size and distance expected to travel): Uniform distribution of litter. Litter rarely

moves >6 inches on flatter slopes and may be as much as doubled on steeper slopes, then only during high intensity storms.

- 8. Soil surface (top few mm) resistance to erosion (stability values are averages most sites will show a range of values): Average of stability scores 5 or better.
- Soil surface structure and SOM content (include type of structure and A-horizon color and thickness): Ap horizon: 0 to 16 inches; light brown loamy fine sand, single grained structure.
 Bt horizon: 16 to 36 inches; reddish brown sandy loam, reddish brown medium prismatic structure.

Refer to description for specific component sampled.

- 10. Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff: Infiltration and runoff are not affected by any changes in plant community composition and distribution. (Tallgrass/ Tree dominant).
- 11. Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site): There is no compaction layer.
- 12. Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):

Dominant: Foliar cover : Tree = Tallgrasses

Sub-dominant: Little Bluestem

Other: Mid/Short = Forb+Legume , Shrub

Additional: Tree species should be predominately oak and hickory

- Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence): There may be some plant mortality and decadence on the perennial grasses, especially in the absence of fire and herbivory, but usually <5%.
- 14. Average percent litter cover (%) and depth (in): Litter should cover 50-75% of the area between plants with accumulations of no more than 1 inch deep.
- 15. Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annualproduction): Normal production is 2500 – 5000 pounds per year.
- 16. Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize

degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site: Invasives include: eastern redcedar, elm, hackberry, greenbriar, privet, sericea lespedeza and non-natives (introduced species).

17. **Perennial plant reproductive capability:** All plants capable of reproducing every year. Seed stalks, stalk length and seedheads are numerous.