

# Ecological site R102CY050NE Loamy Lowland

Last updated: 12/10/2024 Accessed: 05/12/2025

#### General information

**Provisional**. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.



Figure 1. Mapped extent

Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated.

## **Classification relationships**

"Silty Lowland" range sites for NE NRCS Vegetation Zones 3 & 4

NE Natural Heritage Program/NE Game & Parks Commission: "Lowland Tallgrass Prairie"

General information for MLRA 102C:

\*Fenneman (1916) Physiographic Regions\*

**Division - Interior Plains** 

East:

Province - Central Lowland

Section - Till Plains

West:

Province - Great Plains

Section - High Plains

\*USFS (2007) Ecoregions\*

Domain - Humid Temperate

Division - Prairie

Province - Prairie Parkland (Temperate) Section - North-Central Glaciated Plains (251B)

\*EPA Ecoregions (Omernik 1997)\*

I - Great Plains (9)

II - Temperate Prairies (9.2)

III - Western Corn Belt Plains (9.2.3) IV - Loess Prairies (47a)

IV - Northeastern Nebraska Loess Hills (47k)

IV - Transitional Sandy Plain (47I)

## **Ecological site concept**

This site occurs in receiving landscape positions with gentle slopes allowing for the capture and storage of precipitation in addition to run-on (both surface and subsurface) originating from higher on the landscape. This additional moisture may also bring with it soil material and nutrients, making this the most productive ecological site in the MLRA without water table influence. Some terrace positions may still experience flooding, but so infrequently that it is not a significant driver of ecological dynamics. Tree/shrub encroachment is similar to upland processes; however, the more mesic conditions and proximity to riparian corridors may be promote deciduous species.

### **Associated sites**

| R102CY048NE | Loamy Overflow Lower landscape positions, typically adjacent to waterways |
|-------------|---------------------------------------------------------------------------|
| R102CY058NE | Loamy Upland Higher landscape positions, often with greater slope         |

### Similar sites

| R102CY058NE | Loamy Upland Net loss of moisture through run-off reduces vegetative production                |
|-------------|------------------------------------------------------------------------------------------------|
| R102CY048NE | Loamy Overflow Ocassional to frequent flooding influence vegetative production and composition |

### Table 1. Dominant plant species

| Tree       | Not specified                                                                 |
|------------|-------------------------------------------------------------------------------|
| Shrub      | Not specified                                                                 |
| Herbaceous | <ul><li>(1) Andropogon gerardii</li><li>(2) Schizachyrium scoparium</li></ul> |

## Physiographic features

This site predominantly occurs on nearly level to very gently sloping upland drainageways, stream terraces, foot slopes, floodplains, and alluvial fans (0-3% slopes). It predominantly receives runoff from adjacent sites. Some areas have a seasonally high water table from 91 to 183 centimeters (36 to 72 inches) from November-February; however, most have a water table greater than 203 centimeters (80 inches). This site does not pond and may rarely flood for a brief duration.

Table 2. Representative physiographic features

| Landforms          | <ul><li>(1) Strath terrace</li><li>(2) Flood plain</li><li>(3) Drainageway</li></ul> |
|--------------------|--------------------------------------------------------------------------------------|
| Runoff class       | Negligible to low                                                                    |
| Flooding duration  | Extremely brief (0.1 to 4 hours) to brief (2 to 7 days)                              |
| Flooding frequency | None to rare                                                                         |

| Elevation         | 1,150–1,800 ft                     |
|-------------------|------------------------------------|
| Slope             | 0–3%                               |
| Water table depth | 36–80 in                           |
| Aspect            | Aspect is not a significant factor |

## **Climatic features**

Most of the rainfall occurs as high-intensity, convective thunderstorms during the growing season. Peak precipitation occurs from the middle of spring to early in autumn. Winter precipitation occurs as snow (USDA/NRCS 2006).

The average annual temperature gradient trends higher from north (45°F/7°C) to south (51°F/11°C).

The average annual precipitation gradient trends higher from northwest (64 centimeters / 25 inches) to southeast (79 centimeters / 31 inches).

The annual snowfall ranges from about 60 centimeters (24 inches) in the southern part of the area to 85 centimeters (34 inches) in the northern part.

The following data summary includes weather stations representing the full geographic extent of the MLRA and is based on 70% probabilities (NOAA/UNL) meaning that actual observed climate conditions may fall outside these ranges 30% of the time. Furthermore, climatic events can manifest many different ways. For example, abnormally dry periods could occur as 3 consecutive drought years out of 10, 3 individual years separated by "normal" years, or some combination. Tree-ring records indicate that portions of the Great Plains have also historically experienced droughts lasting several decades, so plant community response will largely depend on the manner in which climatic variability is realized in interaction with past and current land management.

Table 3. Representative climatic features

| Frost-free period (characteristic range)   | 123-129 days |
|--------------------------------------------|--------------|
| Freeze-free period (characteristic range)  | 143-159 days |
| Precipitation total (characteristic range) | 27-29 in     |
| Frost-free period (actual range)           | 119-137 days |
| Freeze-free period (actual range)          | 138-166 days |
| Precipitation total (actual range)         | 27-30 in     |
| Frost-free period (average)                | 127 days     |
| Freeze-free period (average)               | 150 days     |
| Precipitation total (average)              | 28 in        |

#### Climate stations used

- (1) FREMONT [USC00253050], Fremont, NE
- (2) ALBION [USC00250070], Albion, NE
- (3) EWING [USC00252805], Ewing, NE
- (4) WAYNE [USC00259045], Wayne, NE
- (5) GAVINS POINT DAM [USC00253165], Yankton, NE
- (6) HAWARDEN [USC00133718], Hawarden, IA
- (7) FLANDREAU [USC00392984], Flandreau, SD

### Influencing water features

No riparian or wetland features are associated with this site.

#### Soil features

These are predominantly very deep, moderately well to well drained soils. The surface texture is predominantly silt loam, silty clay loam, or loam from 0 to 18 centimeters (0 to 7 inches) and the Subsurface Texture Group is Loamy from 18 to 203 centimeters (7 to 80 inches).

Rills and gullies are not inherent to this site. Water flow patterns, if present, should be irregular and disconnected, and pedestalling none to slight; although, both of these indicators may become more apparent as slope approaches the upper limit for the site. Soil aggregate stability should be high.

Major soils assigned to this site include Alcester, Hord, Judson, Maskell, Muir, Trent

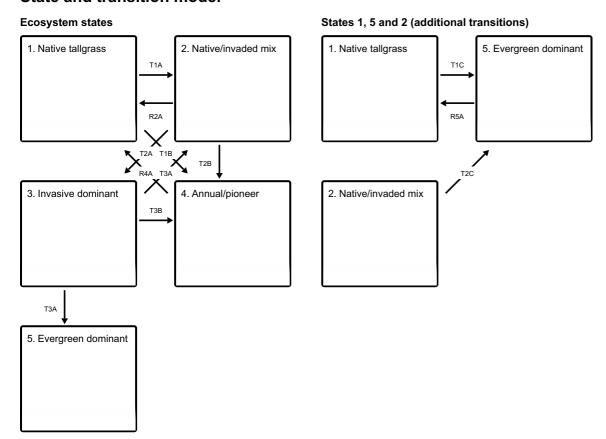
Table 4. Representative soil features

| Parent material                                       | (1) Alluvium<br>(2) Loess<br>(3) Colluvium       |
|-------------------------------------------------------|--------------------------------------------------|
| Surface texture                                       | (1) Silty clay loam<br>(2) Silt loam<br>(3) Loam |
| Family particle size                                  | (1) Loamy                                        |
| Drainage class                                        | Moderately well drained to well drained          |
| Permeability class                                    | Moderately rapid to rapid                        |
| Soil depth                                            | 80 in                                            |
| Surface fragment cover <=3"                           | 0–2%                                             |
| Surface fragment cover >3"                            | 0%                                               |
| Available water capacity (0-40in)                     | 5.8–9.4 in                                       |
| Calcium carbonate equivalent (0-40in)                 | 0–5%                                             |
| Electrical conductivity (0-40in)                      | 0–2 mmhos/cm                                     |
| Sodium adsorption ratio (0-40in)                      | 0                                                |
| Soil reaction (1:1 water) (0-40in)                    | 5.6–8.4                                          |
| Subsurface fragment volume <=3" (Depth not specified) | 0–9%                                             |
| Subsurface fragment volume >3" (Depth not specified)  | 0%                                               |

## **Ecological dynamics**

This site occurs in receiving landscape positions with gentle slopes allowing for the capture and storage of precipitation in addition to run-on (both surface and subsurface) originating from higher on the landscape. This additional moisture may also bring with it soil material and nutrients, making this the most productive ecological site in the MLRA without water table influence. Some terrace positions may still experience flooding, but so infrequently that it is not a significant driver of ecological dynamics. Tree/shrub encroachment is similar to upland processes; however, the more mesic conditions and proximity to riparian corridors may be promote deciduous species.

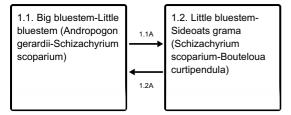
This site developed with fire as an integral part of the ecological processes and grassland maintenance. It is presumed that the historic fires generally occurred every 3-4 years, were randomly distributed, and ignited by


lightning at various times throughout the summer when thunderstorms were likely to occur. Furthermore, it is also believed that pre-European inhabitants often used fire as a management tool for attracting herds of large migratory herbivores (bison, elk, and/or deer) as well as for warfare. However, the impact of fire over the past 100 years has been diminished due to human prevention and suppression of wildfire and the pervasive lack of cultural acceptance of prescribed fire as a surrogate (Helzer 2010).

The degree of herbivory (feeding on herbaceous plants) has a significant impact on the dynamics of the site. Historically, periodic grazing by herds of large migratory herbivores was a primary influence; however, herbivory by species such as insects, rodents, and root feeding organisms also impacted the vegetation historically and continue to this day (Helzer 2010). Human control of large herbivore impacts through grazing of domestic livestock and/or manipulation of wildlife populations has been a major contemporary influence on the ecological dynamics of the site (USDA/SCS 1977) and this management coupled with climate largely dictates the plant communities observed.

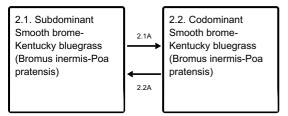
The reference state characterizes the historic natural condition, and has been determined by the study of rangeland relic areas, areas protected from excessive disturbance, and/or areas under compatible grazing regimes. Trends in plant community dynamics ranging from heavily grazed to unused areas, seasonal use pastures, and historical accounts have also been considered.

The following is a diagram illustrating predictable and recurring plant communities inherent to this site, and the pathways of change between them (Bestelmeyer 2010). The ecological processes will be discussed in more detail in the plant community descriptions following the diagram.


### State and transition model



- T1A Reduced native competitiveness allows for introduced grass to establish.
- T1B Severe disturbance
- T1C Cedar encroachment
- R2A Reduced invasive grass competitiveness allows native species to increase
- T2A Introduced grasses increase
- T2B Disturbance allows for opportunistic species
- T2C Cedar encroachment; woody plant dominance
- T3A Reduced invasive grass competitiveness allows native species to increase
- T3B Severe disturbance


- T3A Cedar encroachment; woody species dominance
- R4A Reduced invasive plant competitiveness allows native species to increase
- R5A Woody removal allows for return in herbaceous dominance

#### State 1 submodel, plant communities



- 1.1A Reduced tallgrass vigor due to excessive defoliation intensity and frequently; drought
- **1.2A** Improved tallgrass vigor with adequate rest periods; return of normal precipitation

#### State 2 submodel, plant communities



- 2.1A Increase of non-native grasses
- 2.2A Shift in community to higher percentage of warm-season grasses

### State 3 submodel, plant communities

3.1. Smooth brome-Kentucky bluegrass (Bromus inermis-Poa pratensis)

### State 4 submodel, plant communities

4.1. Variable native and introduced

#### State 5 submodel, plant communities

5.1. Eastern redcedar (Juniperus virginiana)

## State 1 Native tallgrass

This state comprises the communities within the range of natural variability under historic conditions and disturbance regimes. Patterns created by wildlife use and fire would have created a mosaic of communities across

the landscape; however, tall and/or mid warm-season grasses would remain dominant, with a subdominant contribution from native cool-season grasses, forbs, and shrubs. The cool-season contribution increases with latitude, with species such as needleandthread and green needlegrass becoming more prevalent northward. Fire and bison herbivory were the dominant disturbance regimes that historically maintained the tallgrass dominance with a diverse forb component. Furthermore, bison grazing was closely linked to fire patterns as the animals preferred grazing burned areas offering lush regrowth devoid of decadence and of higher nutritive quality. Thus, historic plant communities were subjected to occasional burning and grazing, with substantial rest/recovery periods as the fuel load rebuilt to eventually start the process again. Fire return intervals of 3-4 years served to suppress woody species, particularly non-sprouting eastern redcedar. The degree to which observed conditions represent this state largely depends on how closely the management has mimicked these past disturbance effects.

### **Dominant plant species**

- big bluestem (Andropogon gerardii), grass
- little bluestem (Schizachyrium scoparium), grass

## Community 1.1 Big bluestem-Little bluestem (Andropogon gerardii-Schizachyrium scoparium)



Figure 8. Loamy Lowland 1.1 - mid-July

This is the interpretive plant community and can be found on areas that are properly managed with prescribed grazing that allows for adequate recovery periods following each grazing event. The plant community consists of 85-95% grasses and grass-likes, 5-10% forbs and 0-5% shrubs. Dominant grasses include big bluestem, little bluestem, indiangrass, and switchgrass. Other grasses and grass-likes are sideoats grama, Scribner's panicum, and sedges. Forb species are diverse and include cudweed sagewort, western ragweed, and goldenrods. Common shrubs include western snowberry and leadplant. This plant community is diverse, stable, and productive. Plant community dynamics, nutrient cycles, water cycles, and energy flow are functioning properly. Plant litter is properly distributed with negligible movement off-site and natural plant mortality is very low. This community is resistant to many disturbances except continuous, season-long heavy grazing, tillage, or non-use. Broadcast herbicide application will dramatically reduce forb diversity and abundance. Total annual production, during an average year, ranges from 3,200 to 4,800 pounds per acre air-dry weight and will average 4,000 pounds.

### **Dominant plant species**

- big bluestem (Andropogon gerardii), grass
- little bluestem (Schizachyrium scoparium), grass

Table 5. Annual production by plant type

| Plant Type      | Low<br>(Lb/Acre) | Representative Value<br>(Lb/Acre) |      |
|-----------------|------------------|-----------------------------------|------|
| Grass/Grasslike | 3025             | 3600                              | 4100 |
| Forb            | 175              | 300                               | 475  |
| Shrub/Vine      | 0                | 100                               | 225  |
| Total           | 3200             | 4000                              | 4800 |

Figure 10. Plant community growth curve (percent production by month). NE1021, 102C Warm-season. Warm-season grass, MLRA 102C.

| Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0   | 0   | 2   | 7   | 18  | 23  | 26  | 16  | 6   | 2   | 0   | 0   |

## Community 1.2

## Little bluestem-Sideoats grama (Schizachyrium scoparium-Bouteloua curtipendula)

This community largely resembles central Great Plains mixed-grass prairies where rainfall is more limiting and overall conditions are relatively drier. Tallgrasses remain an important component, but midgrasses - typically sideoats grama and little bluestem - dominate site structure and function. While still within the range of natural variability, energy capture, nutrient cycling, and hydrology are not functioning at their full potential relative to the reference condition. Reduced photosynthetic biomass does not capture as much light energy, less lignified plant material produces lower quality litter (e.g. less persistent, more easily transported), and reduced soil protection impairs the site"s ability to capture and retain moisture.

### **Dominant plant species**

- little bluestem (Schizachyrium scoparium), grass
- sideoats grama (Bouteloua curtipendula), grass

Figure 11. Plant community growth curve (percent production by month). NE1021, 102C Warm-season. Warm-season grass, MLRA 102C.

| Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0   | 0   | 2   | 7   | 18  | 23  | 26  | 16  | 6   | 2   | 0   | 0   |

## Pathway 1.1A Community 1.1 to 1.2

Events which remove tallgrass growing points and photosynthetic tissues without adequate recovery periods will shift community composition towards shorter statured species, particularly little bluestem and sideoats grama. Likewise, shortgrasses such as hairy and/or blue grama may also proliferate. As cattle grazing pressure increases/persists, rhizomatous grasses may assume a more sodbound growth habit which can further reduce overall diversity and adversely affect both infiltration and litter. Periods of extended drought can have similar impacts on species composition and bring about a shift towards mixed/shortgrass prairie species more tolerant of drier conditions.

## Pathway 1.2A Community 1.2 to 1.1

Management that provides adequate recovery periods and does not annually prevent tallgrass seedset or otherwise impair vigor will facilitate a return to community phase 1.1. In the case of dought, the return to more typical precipitation patterns will promote shift towards tallgrass species.

## State 2 Native/invaded mix

This state can manifest three ways: 1) the appearance of introduced cool-season grasses, 2) the expansion of deciduous shrubs and/or trees, or 3) some combination of these. Kentucky bluegrass and smooth brome are the primary cool-season grass invaders in this region, commonly found in roadsides, disturbed areas, and pastures intentionally seeded for cool-season forage. Management practices and/or environmental conditions that are not favorable to native grass vigor may allow introduced grasses to invade the site thereby decreasing native diversity and abundance, particularly of forbs. In the absence of the historic fire regime, woody deciduous species may also expand to become an influential component of the community. The invasive component tends to have very high reslience, is extremely difficult to eradicate, and what might be considered a new "contemporary" range of natural variability is seen as competition between the native grasses and introduced/woody species for space and resources.

### **Dominant plant species**

- little bluestem (Schizachyrium scoparium), grass
- sideoats grama (Bouteloua curtipendula), grass
- smooth brome (*Bromus inermis*), grass
- Kentucky bluegrass (Poa pratensis), grass

## Community 2.1 Subdominant Smooth brome-Kentucky bluegrass (Bromus inermis-Poa pratensis)



Figure 12. LyL 2.1 - native/brome mix in drought

While native grasses still dominate the site, introduced cool-season species have established a foothold in the system and can be found interspersed throughout the stand. The stand may still have a native tallgrass appearance overall, but bluegrass and/or brome can be easily found. Deciduous shrub/tree species may also have begun to expand into areas where they did not persist historically, but the overall appearance can vary depending on the propagation method of a particular species. Seed propagated species, such as Siberian elm, tend to colonize further from the parent plant and affect larger areas, but in lower densities. In contrast, rhizomatous species such as smooth sumac tend to progress as a higher-density encroachment spreading directly from the parent plants.

### **Dominant plant species**

- little bluestem (Schizachyrium scoparium), grass
- smooth brome (Bromus inermis), grass
- sideoats grama (Bouteloua curtipendula), grass
- Kentucky bluegrass (Poa pratensis), grass

Figure 13. Plant community growth curve (percent production by month). NE1022, Warm-season dominant, cool-season subdominant.

| Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0   | 0   | 2   | 9   | 19  | 23  | 24  | 13  | 7   | 3   | 0   | 0   |

## Codominant Smooth brome-Kentucky bluegrass (Bromus inermis-Poa pratensis)

This community is comprised of a relatively even mix of native grasses and invasive species overall. This may manifest as a well-distributed interspersion of natives and invaders, as distinct patches wherein competitors dominate locally, or some combination. Forb diversity and abundance is further diminished.

Figure 14. Plant community growth curve (percent production by month). NE1023, Warm-season, cool-season codominant.

| Já | an | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0  |    | 0   | 3   | 10  | 23  | 26  | 16  | 10  | 7   | 4   | 1   | 0   |

## Pathway 2.1A Community 2.1 to 2.2

Management and/or environmental conditions have afforded a persisting competitive advantage to introduced coolseason grasses, and they begin to dominate the ecological dynamics of the site. The robust invasive component is able to quickly and effectively exploit opportunities to outcompete and displace natives. Repeated summer use of an area will place the bulk of stressor impacts on native plants, reducing native vigor and allowing invaders to thrive. Likewise, a climate pattern limiting natural moisture to the spring and fall months coincides with peak cool-season growth and may support a similar process.

## Pathway 2.2A Community 2.2 to 2.1

The native component remains in an abundance that can facilitate a return towards more historic conditions if management is modified to shift stressor impacts to the invasive species, and promote warm-season grass vigor. Environmental conditions and/or disturbance regimes that strongly favor warm-season grasses can also trend the site towards the reference.

## State 3 Invasive dominant

Introduced cool-season invasion has progressed to the point that native species comprise a negligible portion of the community and the aggressively rhizomatous invasives preclude native germination and seedling survival. The native component may be completely absent, and the site resembles a seeded pasture. Alternatively, the dominant invasives may be deciduous woody species. Woody competitiveness for sunlight, water, space, and other resources continues to increase as desirable herbaceous species are shaded out, crowded out, or otherwise suppressed.

### **Dominant plant species**

- smooth brome (*Bromus inermis*), grass
- Kentucky bluegrass (Poa pratensis), grass

## Community 3.1

Smooth brome-Kentucky bluegrass (Bromus inermis-Poa pratensis)



Figure 15. LyL 3.1 - brome

This community is typically composed of smooth brome with bluegrass interspersed among the brome tillers. Warm-season natives, if present, are sparse yet often conspicuous due to pronounced differences in growth habits and metabolic pathways. Community structure and function have been dramatically simplified relative to the reference condition, and very few biotic functional groups are represented in amounts that would influence ecological function. The invasive grass root skein provides good site stability; however, replacement of the deeper roots and complex bunchgrass canopy with the shallower roots and erect tiller canopy of the invaders results in reduced interception and infiltration rates.

### **Dominant plant species**

- smooth brome (Bromus inermis), grass
- Kentucky bluegrass (Poa pratensis), grass

Figure 16. Plant community growth curve (percent production by month). NE1024, Cool-season. Smooth brome/Kentucky bluegrass.

| Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0   | 0   | 4   | 13  | 25  | 28  | 8   | 6   | 9   | 5   | 2   | 0   |

## State 4 Annual/pioneer

Nutrient cycling, hydrologic function, and/or soil stability have been severely altered, and possibly compromised. This is a highly variable state in which the specific plants observed will depend largely on the original community and the nature of the disturbance. This condition encompasses (but is not necessarily limited to) events such as severe fire impacts, heavy continuous grazing, heavy nutrient inputs, and abandoned cropland.

### **Dominant plant species**

- snow on the mountain (Euphorbia marginata), other herbaceous
- ragweed (Ambrosia), other herbaceous
- Texas croton (Croton texensis), other herbaceous
- nightshade (Solanum), other herbaceous
- hoary verbena (Verbena stricta), other herbaceous
- thistle (Cirsium), other herbaceous

## Community 4.1 Variable native and introduced



Figure 17. LyL 4.1 - feeding area

This community is heavily dominated by annual plants that thrive in disturbed areas and often includes snow-on-the-mountain, annual ragweed, Texas croton, nightshades, and/or hoary verbena. It is also particularly vulnerable to noxious weed invasion with the most common species being plumeless, musk, and Canada thistles. Leafy spurge becomes more common northward in the MLRA.

#### **Dominant plant species**

- snow on the mountain (Euphorbia marginata), other herbaceous
- ragweed (Ambrosia), other herbaceous
- Texas croton (Croton texensis), other herbaceous
- nightshade (Solanum), other herbaceous
- hoary verbena (Verbena stricta), other herbaceous

## State 5 Evergreen dominant

Left unchecked, the spatial extent of eastern redcedar encroachment has expanded, and the individual trees have grown substantially. The areas under and near individual cedars experience profoundly altered function through shading, evergreen litter, and suppressed herbaceous understory. The woody overstory now dictates certain disturbance responses, and prescribed fire options become increasingly problematic as any fire will be largely carried by the volatile evergreen canopy instead of the herbaceous understory.

## **Dominant plant species**

• eastern redcedar (Juniperus virginiana), tree

## Community 5.1 Eastern redcedar (Juniperus virginiana)

Cedars have reached stature and abundance that is beyond the range of natural variability, and the remaining herbaceous component is restricted to cedar interspaces. Evergreen canopy and litter serve to dramatically increase interception, capture, and eventual evaporation of precipitation thereby further reducing the resources available for grasses and forbs. Without intervention, woody canopy will progress towards complete closure under which herbaceous species will eventually disappear completely.

## Transition T1A State 1 to 2

In the presence of introduced cool-season grasses, environmental conditions and/or management that reduces native vigor and stand resilience, and frees up resources (space, sunlight, nutrients, water) will allow for colonization of Kentucky bluegrass and smooth brome. Likewise, similar processes may also allow for deciduous woody shrubs and trees such as smooth sumac, roughleaf dogwood, and Siberian elm to expand.

## Transition T1B State 1 to 4

There are many possible triggers for this transition that may occur as acute events (e.g. plowing) or cumulative impacts of chronic events (e.g. long-term undermanaged grazing.) The absence of deep-rooted perennial cover exposes the site to topsoil loss, open nutrient cycle, and free space which collectively allow for opportunistic annual species to dominate.

## Transition T1C State 1 to 5

The presence of an invasion source coupled with fire exclusion allows cedar seeds to germinate and establish within the herbaceous stand. This typically begins near fencerows, woody draws, etc, and accelerates outward as propagules increase. Lack of intervening action allows cedar expansion to continue, and tree sizes to increase. Cedar will eventually modify site function in ways that promote further encroachment such as rainfall interception and stemflow, heavy duff litter, and shading of the herbaceous understory.

## Restoration pathway R2A State 2 to 1

Eradication of introduced cool-season grasses from this site will require long-term, targeted management efforts to create an adverse environment during the spring and late fall when bluegrass and brome are most actively growing, with favorable conditions during the summer to promote native warm-season species. Targeted practices such as prescribed burning, flash grazing, and herbicide are often employed at strategic times of the year to set back undesirable species. The combination of practices should strive to mimic the historic disturbance regimes to which the desirable native species are best adapted.

## Transition T2A State 2 to 3

If the conditions which initiated and fomented the colonization and expansion of cool-season invasion are not removed or mitigated, stand composition will continue to shift in this direction and begin to resemble a monoculture of bluegrass and/or brome. Due to the dense rhizomatous root mat of brome and bluegrass, native species suffer decreasing opportunities to contribute propagules, and individual plants lost are not replaced by desirable natives.

## Transition T2B State 2 to 4

There are many possible triggers for this transition that may occur as acute events (e.g. plowing) or cumulative impacts of chronic events (e.g. long-term undermanaged grazing.) The absence of deep-rooted perennial cover exposes the site to topsoil loss, open nutrient cycle, and free space which collectively allow for opportunistic annual species to dominate.

## Transition T2C State 2 to 5

The presence of an invasion source coupled with fire exclusion allows cedar seeds to germinate and establish within the herbaceous stand. This typically begins near fencerows, woody draws, etc, and accelerates outward as propagules increase. Lack of intervening action allows cedar expansion to continue, and tree sizes to increase. Cedar will eventually modify site function in ways that promote further encroachment such as rainfall interception and stemflow, heavy duff litter, and shading of the herbaceous understory.

## Transition T3A State 3 to 2

Aggressive intervening actions will be required to simultaneously recolonize native grasses and suppress vigor in undesirable species. Restoration follows the same principles as the R2A pathway, but may also require native range

seeding if the latent seedbank is inadequate.

## Transition T3B State 3 to 4

Nutrient cycling, hydrologic function, and/or soil stability have been severely altered, and possibly compromised. This is a highly variable state in which the specific plants observed will depend largely on the original community and the nature of the disturbance.

## Transition T3A State 3 to 5

The presence of an invasion source coupled with fire exclusion allows cedar seeds to germinate and establish within the herbaceous stand. This typically begins near fencerows, woody draws, etc, and accelerates outward as propagules increase. Lack of intervening action allows cedar expansion to continue, and tree sizes to increase. Cedar will eventually modify site function in ways that promote further encroachment such as rainfall interception and stemflow, heavy duff litter, and shading of the herbaceous understory.

## Restoration pathway R4A State 4 to 1

With favorable weather and site stability, it may take just a few years for the site to naturally return to a perennial community. Range seeding can "jump start" the recolonization of desirable species and may re-establish a near reference grass community; although, forb diversity may take longer to recover. Depending on the nature of the disturbance(s), additional ameliorative efforts may be necessary to mitigate accelerated erosion and weedy competition until the seeded perennial community has stabilized. It is possible for a disturbance and/or subsequent processes (e.g. accelerated erosion) to profoundly, and even permanently, alter fundamental soil properties in such a way that the site may never again exhibit its historic structure or function without extraordinary restoration inputs.

## Restoration pathway R5A State 5 to 1

Tree mortality is required to restore a grassland state, however the herbaceous response will depend on many factors such as method(s) used, mortality rates, and the remnant herbaceous species. Mechanical and chemical methods can remove cedars but will have little if any notable impact on the herbs. Reintroducing the historic fire regime will provide the most profound and beneficial effects, and seasonal timing and burn intensity can have significant influence on the herbaceous outcome. As a general rule, hot spring burns will not only kill trees but also stress shallower-rooted invasive cool-season grasses and promote a ahift in favor of the reference community.

### Additional community tables

Table 6. Community 1.1 plant community composition

| Group | Common Name      | Symbol | Scientific Name         | Annual Production<br>(Lb/Acre) | Foliar Cover<br>(%) |
|-------|------------------|--------|-------------------------|--------------------------------|---------------------|
| Grass | /Grasslike       |        |                         |                                |                     |
| 1     | Tall warm-season |        | 3400–3800               |                                |                     |
|       | big bluestem     | ANGE   | Andropogon gerardii     | 1000–1600                      | -                   |
|       | switchgrass      | PAVI2  | Panicum virgatum        | 200–600                        | -                   |
|       | Indiangrass      | SONU2  | Sorghastrum nutans      | 200–400                        | _                   |
|       | prairie dropseed | SPHE   | Sporobolus heterolepis  | 0–200                          | _                   |
| 2     | Mid warm-season  |        | 600–1000                |                                |                     |
|       | little bluestem  | SCSC   | Schizachyrium scoparium | 800–1200                       | -                   |
|       | sideoats grama   | BOCU   | Bouteloua curtipendula  | 200–600                        | -                   |
| 3     | Shortgrasses     |        | 0–5                     |                                |                     |
|       |                  |        |                         |                                |                     |

|      | buffalograss               | BODA2  | Bouteloua dactyloides                            | 0–200   | _ ' |
|------|----------------------------|--------|--------------------------------------------------|---------|-----|
|      | blue grama                 | BOGR2  | Bouteloua gracilis                               | 0–200   | _   |
| 4    | Cool-season                |        | 300–1050                                         |         |     |
|      | western wheatgrass         | PASM   | Pascopyrum smithii                               | 0–600   | _   |
|      | Canada wildrye             | ELCA4  | Elymus canadensis                                | 0–200   | _   |
|      | porcupinegrass             | HESP11 | Hesperostipa spartea                             | 0–200   | _   |
|      | prairie Junegrass          | KOMA   | Koeleria macrantha                               | 0–200   | _   |
|      | Scribner's rosette grass   | DIOLS  | Dichanthelium oligosanthes var.<br>scribnerianum | 0–175   | _   |
| 5    | Grasslike                  |        |                                                  | 0–200   |     |
|      | sedge                      | CAREX  | Carex                                            | 0–200   | _   |
| Forb |                            | •      |                                                  | •       |     |
| 6    | Forb                       |        |                                                  | 200–400 |     |
|      | purple poppymallow         | CAIN2  | Callirhoe involucrata                            | 0–200   | _   |
|      | purple prairie clover      | DAPU5  | Dalea purpurea                                   | 0–120   | _   |
|      | Illinois ticktrefoil       | DEIL2  | Desmodium illinoense                             | 0–120   | _   |
|      | Maximilian sunflower       | HEMA2  | Helianthus maximiliani                           | 0–120   | _   |
|      | tall blazing star          | LIAS   | Liatris aspera                                   | 0–120   | _   |
|      | dotted blazing star        | LIPU   | Liatris punctata                                 | 0–120   | _   |
|      | rush skeletonplant         | LYJU   | Lygodesmia juncea                                | 0–120   | _   |
|      | stiff goldenrod            | OLRI   | Oligoneuron rigidum                              | 0–120   | _   |
|      | slimflower scurfpea        | PSTE5  | Psoralidium tenuiflorum                          | 0–120   | _   |
|      | upright prairie coneflower | RACO3  | Ratibida columnifera                             | 0–120   | _   |
|      | Missouri goldenrod         | SOMI2  | Solidago missouriensis                           | 35–120  | _   |
|      | white heath aster          | SYER   | Symphyotrichum ericoides                         | 0–120   | _   |
|      | hoary verbena              | VEST   | Verbena stricta                                  | 0–120   | _   |
|      | western yarrow             | ACMIO  | Achillea millefolium var. occidentalis           | 0–120   | _   |
|      | Cuman ragweed              | AMPS   | Ambrosia psilostachya                            | 0–120   | _   |
|      | field pussytoes            | ANNE   | Antennaria neglecta                              | 0–120   | _   |
|      | white sagebrush            | ARLU   | Artemisia ludoviciana                            | 0–120   | _   |
|      | false boneset              | BREU   | Brickellia eupatorioides                         | 0–120   | _   |
| Shru | b/Vine                     |        |                                                  |         |     |
| 7    | Shrubs                     |        | 0–200                                            |         |     |
|      | Shrub (>.5m) 2SHRI         |        | Shrub (>.5m)                                     | 0–200   |     |
|      | leadplant AMCA             |        | Amorpha canescens                                | 0–200   |     |
|      | prairie rose ROAR          |        | Rosa arkansana                                   | 0–200   | _   |
|      | western snowberry SYOC     |        | Symphoricarpos occidentalis                      | 0–200   | _   |
|      | eastern poison ivy         | TORA2  | Toxicodendron radicans                           | 0–200   |     |
|      |                            |        |                                                  |         |     |

## **Animal community**

This site is well adapted to managed grazing by domestic livestock. The predominance of herbaceous plants across all plant community phases best lends these sites to grazing by cattle but browsing livestock such as goats or sheep that will more heavily utilize invasive forbs and brush. Carrying capacity and production estimates are conservative estimates that should be used only as guidelines in initial stages of grazing lands planning.

Often, the plant community does not entirely match any particular plant community (as described in the ecological site description). Because of this, a resource inventory is necessary to document plant composition and production. Proper interpretation of this inventory data will permit the establishment of a safe, initial stocking rate for the type and class of animals and level of grazing management. Grazing by domestic livestock is one of the major income-producing industries in the area. Rangeland in this area may provide year-long forage for cattle, sheep, or horses. During the dormant period, the protein levels of the forage may be lower than the minimum needed to meet livestock (primarily cattle and sheep) requirements.

Suggested stocking rates (carrying capacity\*) for cattle under continuous season-long grazing under normal growing conditions are listed below:

- 1.1 Big bluestem-Little bluestem; 4000 lbs/acre production and 1.10 AUM/acre
- 1.2 Little bluestem-Sideoats grama; 3200 lbs/acre production and 0.88 AUM/acre
- 2.1 Subdominant smooth brome-KY bluegrass; 2650 lbs/acre production and 0.73 AUM/acre
- 2.2 Codominant smooth brome-KY bluegrass; 2150 lbs/ac and 0.59 AUM/acre with 50% or more introduced cool-season component
- 3.1 Smooth brome-KY bluegrass; 2800 lbs/ac and .77 AUM/ac, unfertilized, non-irrigated naturalized community. Refer to Forage Suitability Groups for cool-season pasture under a higher management level.

\*Carrying capacity based on continuous season-long grazing by cattle under average growing conditions, 25% harvest efficiency. Air dry forage requirements based on 3% of animal body weight, or 912 lbs/AU/month.

If grazing distribution problems occur, stocking rates must be reduced to maintain plant health and vigor. Carrying capacity and production estimates are conservative estimates that should be used only as guidelines in the initial stages of the conservation planning process. Utilizing a rotational grazing system that allows for adequate rest and recovery will increase plant vigor and carrying capacity. Often, the current plant composition does not entirely match any particular plant community (as described in this ecological site description). Because of this, a field visit is recommended to document plant composition and production. More precise carrying capacity estimates can be calculated based on actual site information along with animal preference data, particularly when livestock other than cattle are involved. With consultation of the land manager, more intensive grazing management may result in improved harvest efficiencies and increased carrying capacity.

### Inventory data references

Information presented here has been derived from RANGE-417 archives, Rangeland NRI, and other inventory data. Field observations from range-trained personnel were also used. In addition to the multitude of NRCS field office employees and private landowners that helped with site visits and local knowledge, those involved in developing this site include:

Nebraska NRCS:

Nadine Bishop, State Rangeland Management Specialist Patrick Cowsert, Resource Soil Scientist Cassidy Gerdes, Biologist Dirk Schultz, Soil Conservationist Dan Shurtliff, Asst State Soil Scientist

South Dakota NRCS:

Stan Boltz, State Rangeland Management Specialist Shane Deranleau, Area Rangeland Management Specialist Kevin Luebke, State Biologist

Iowa NRCS:

Jess Jackson, Area Grazing Specialist

Minnesota NRCS: Lance Smith, Area Grazing Specialist

MLRA Office 10:

Stu McFarland, Ecological Site Inventory Specialist, QC Stacey Clark, Ecological Site Inventory Specialist, QA Michael Whited, Soil Data Quality Specialist Jo Parsley, Soil Scientist/10-3 MSSO Leader

National Soil Survey Center: Mike Kucera, National Agronomist, Soil Quality & Ecosystems Steve Peaslee, GIS Specialist, Soil Survey Interpretations

Nebraska Game & Parks Commission: Gerry Steinauer, Botanist Scott Wessel, Biologist Russ Hamer, Biologist Rebekah Jessen, Biologist

Nebraska Forest Service: Steve Rasmussen, District Forester

### Other references

Bestelmeyer, Brandon, et al. 2010. Practical Guidance for Developing State-and-transition Models. Rangelands 32:6 pp 2-64. Wheat Ridge, CO: Society for Range Management.

Fenneman, Nevin M. 1916. Physiographic Subdivision of the United States. Annals of the Association of American Geographers.

Helzer, Chris. 2010. The Ecology and Management of Prairies in the Central U.S. Iowa City, IA: University of Iowa Press/The Nature Conservancy.

Kaul, Robert B., David Sutherland, and Steven Rolfsmeier. 2006. The Flora of Nebraska. Lincoln, NE: University of Nebraska – Lincoln (Conservation and Survey Division, School of Natural Resources.)

NOAA/UNL – High Plains Regional Climate Center. Historical Data Summaries: http://www.hprcc.unl.edu/data/historical/

Omernik, J.M. 1997. Ecoregions of the Conterminous United States. Annals of the Association of American Geographers, v.77, no. 1, p.118-125.

Steinauer, Gerry and Steve Rolfsmeier. 2010. Terrestrial Ecological Systems and Natural Communities of Nebraska. Lincoln, NE: Nebraska Natural Heritage Program and Nebraska Game and Parks Commission.

USDA/USFS. 2007. Ecological Subregions: Sections and Subsections for the Conterminous United States. Washington, DC: USDA - Forest Service.

USDA/SCS. 1977. Rangeland Resources of Nebraska. Lincoln, NE: Society for Range Management. USDA/NRCS. 2011. ESD User Guide. Fort Worth, TX: Central National Technology Support Center.

USDA/NRCS 2006. Land Resource Regions and Major Land Resource Areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296.

USDA/NRCS. 2012. Field Office Technical Guide (Nebraska, Natural Resources Information, Statewide Soil and Site Information, Rangeland Interpretations, Nebraska Range Site Descriptions – Vegetative Zones 3 and 4), U.S. Department of Agriculture, Natural Resources Conservation Service, Nebraska Ecological Sciences.

#### **Contributors**

Greg Clark (Greg.Clark@usda.gov) Soil Survey Office Leader, USDA-NRCS, Stanton NE Stu McFarland

## **Approval**

Suzanne Mayne-Kinney, 12/10/2024

## Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

| Author(s)/participant(s)                    | Original authors: Stu McFarland and Nadine Bishop ( 08/01/2013). Revision authors: Nadine Bishop, Emily Helms, Jeff Nichols |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Contact for lead author                     | jeffrey.nichols@usda.gov                                                                                                    |
| Date                                        | 12/04/2024                                                                                                                  |
| Approved by                                 | Nadine Bishop                                                                                                               |
| Approval date                               |                                                                                                                             |
| Composition (Indicators 10 and 12) based on | Annual Production                                                                                                           |

### **Indicators**

| 1. | Number and extent of rills: None. Rills are not expected on this site.                                                                                          |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. | Presence of water flow patterns: None. Water flow patterns are not expected on this site.                                                                       |
| 3. | Number and height of erosional pedestals or terracettes: None. Pedestals and terracettes are not expected to occur on this site.                                |
| 4. | Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground): Bare ground is 5 percent or less. |

5. **Number of gullies and erosion associated with gullies:** None. Gullies are not expected on this site.

vegetation, gravel/rock, and visible biological curst (e.g., lichen, mosses, algae).

6. Extent of wind scoured, blowouts and/or depositional areas: None. Wind-scoured and/or depositional areas should

Bare ground is exposed mineral soil that is not covered by vegetation (basal and/or foliar canopy), litter, standing dead

|    | not be present.                                                                                                                                             |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7. | Amount of litter movement (describe size and distance expected to travel): None. Litter should fall in place. Litter movement is not expected on this site. |

- 8. Soil surface (top few mm) resistance to erosion (stability values are averages most sites will show a range of values): Soil stability ratings will be 5 to 6, typically 6. Surface organic matter adheres to the soil surface. Soil surface fragments will typically retain structure indefinitely when dipped in distilled water.
- 9. Soil surface structure and SOM content (include type of structure and A-horizon color and thickness): The A horizon is 12 to 24 inches (30 to 61 cm) thick. Soils are silt loams and silty clay loams. Colors are very dark brown, very dark grayish brown, dark grayish brown or dark gray (10 YR 2 to 5) when dry and very dark brown, very dark gray, very dark grayish brown, or black (10YR 2 or 3) when moist.

Soil structures in the A-horizon range from granular to moderate, medium granular to weak fine granular to weak medium granular to weak thick platy structure parting to weak coarse subangular blocky, to weak fine and medium subangular blocky parting to weak fine granular.

See Official Soil Description for more information; primary soil series associated with this site are Alcester, Hord, Judson, Maskell, Muir, and Trent.

10. Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff: Plant community composition is approximately 85 to 95 percent grasses or grass-like plants, 5 to 10 percent forbs, and 0-5 percent shrubs and trees which optimizes infiltration on the site. The grass and grass-like component is composed of warm-season (C4), tallgrass, warm-season (C4), midgrass, cool-season (C3) grasses, native, perennial, warm-season (C4) shortgrass, and grass-likes. The functional/structural groups provide a combination of rooting depths and structure which positively influences infiltration.

Invasion of introduced cool-season grasses such as Kentucky bluegrass and smooth brome may have an adverse impact infiltration and runoff. Tree encroachment may also negatively impact infiltration and runoff.

- 11. Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site): None. No compaction layers are expected for this site.
- 12. Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):

Dominant: Phase 1.1

1. Native, perennial, warm-season, tallgrass, 3400-3800 #/ac, 85-95% (3 species minimum): big bluestem, switchgrass, Indiangrass, prairie dropseed.

#### Phase 1.2

1. Native, perennial, warm-season, midgrass (2 species minimum): little bluestem, sideoats grama.

Sub-dominant: Phase 1.1

- 1. Native, perennial, warm-season, midgrass, 600-1000 #/ac, 15-25%, (2 species minimum): Little bluestem, sideoats grama.
- 2. Native, perennial, cool-season grass, 300-1050 #/ac, 8-26% (2 species minimum): western wheatgrass, Canada wildrye, porcupinegrass, Scribner's rosettegrass, prairie Junegrass.

### Phase 1.2

- 1. Native, perennial, cool-season bunchgrass (2 species minimum): western wheatgrass, Canada wildrye, porcupinegrass, Scribner's rosettegrass, prairie Junegrass.
- 2. Native, perennial, warm-season tallgrass (2 species minimum): big bluestem, Indiangrass, switchgrass, prairie dropseed.

Other: Minor - Phase 1.1

- 1. Native forb, 200-400 #/ac, 5-10%: forbs present vary from location to location.
- 2. Perennial, native, warm-season shortgrass, 0-200 #/ac, 0-5%: blue grama, buffalograss.
- 3. Grass-likes, 0-200 #/ac, 0-5%: sedges.
- 4. Shrubs, 0-200 #/ac, 0-5%: shrubs present will vary from location to location.

#### Minor - Phase 1.2

- 1. Perennial, native, warm-season, shortgrass: blue grama, buffalograss, hairy grama, threeawn.
- 2. Native forb: forbs present will vary from location to location.
- 3. Grass-likes: sedges.
- 4. Shrubs: shrubs present will vary from location to location.

Additional: The Big Bluestem-Little Bluestem Community or Reference Community (1.1) includes seven F/S groups which include in order of relative abundance, native, perennial, warm-season (C4) tallgrass; native, perennial, warm-season (C4) midgrass; native, perennial, cool-season (C3) grass; native forb; native, perennial, warm-season (C4) shortgrass = grass-likes = shrubs.

The Little Bluestem-Sideoats Grama Community (1.2) includes seven F/S groups which include in order of relative abundance, native, perennial, warm-season (C4) midgrass; native, perennial, cool-season (C3) grass; native, perennial, warm-season (C4) tallgrass; native, perennial, warm-season (C4) shortgrass = native forb; grass-likes; and shrubs.

- 13. Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence): Bunchgrasses have strong, healthy centers with few (less than 3 percent) dead centers. Shrubs may show some dead branches (less than 5 percent) as plants age.
- 14. Average percent litter cover (%) and depth (in): Plant litter cover is evenly distributed throughout the site and is expected to be 70 to 80 percent and at a depth of 0.25 to 0.5 inch (0.6-1.3cm). Litter cover during and following drought can range from 50 to 60 percent. Kentucky bluegrass excessive litter can negatively impact the functionality of this site.
- 15. Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annual-production): The representative value (RV) for annual production is 4,000 pounds per acre in a year with normal precipitation and temperatures. Low and High production years should yield 3,200 and 4,800 pounds per acre respectively.
- 16. Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize

degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site: No non-native invasive species are present. Annual bromes (cheatgrass and Japanese/field), musk thistle, plumeless thistle, Canada thistle, spotted and diffuse knapweed, absinth wormwood, sulphur cinquefoil, Kentucky bluegrass, smooth brome, bur oak, eastern redcedar, roughleaf dogwood, smooth dogwood, buckbrush, and Siberian elm, and autumn olive are known invasives that have the potential to become dominant or co-dominant on the site. Note: species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants.

17. **Perennial plant reproductive capability:** All perennial species exhibit high vigor relative to climatic conditions. Perennial grasses should have vigorous rhizomes or tillers; vegetative and reproductive structures are not stunted. All perennial species should be capable of reproducing annually.