

Ecological site R108XA014IL Outwash Savanna

Last updated: 11/05/2024 Accessed: 05/13/2025

General information

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

MLRA notes

Major Land Resource Area (MLRA): 108X-Illinois and Iowa Deep Loess and Drift

The Illinois and Iowa Deep Loess and Drift, Eastern Part (MLRA 108A) encompasses the Grand Prairie physiographic division (Schewman et al. 1973). It spans two states – Illinois (97 percent) and Indiana (3 percent) – comprising about 11,145 square miles (Figure 1). The elevation ranges from 985 feet above sea level (ASL) in the northern part to 660 feet above sea level in the southern part. Local relief varies from 3 to 10 feet on most of the area which is on broad flat uplands. The maximum relief is about 160 feet along major streams. The northern part of this area is underlain by Ordovician and Silurian limestone and the southern part is underlain by Pennsylvanian shale, siltstone, and limestone. Except for some areas along streams where bedrock is exposed, glacial drift covers all the MLRA. The glacial drift consists of till and stratified outwash and is of Wisconsinan age. A moderately thin to thick layer of loess covers the entire area (USDA-NRCS 2006).

The vegetation in the MLRA has undergone drastic changes over time. At the end of the last glacial episode – the Wisconsinan glaciation – the evolution of vegetation began with the development of tundra habitats, followed by a phase of spruce and fir forests, and eventually spruce-pine forests. Not until approximately 9,000 years ago did the climate undergo a warming trend which prompted the development of deciduous forests dominated by oak and hickory. As the climate continued to warm and dry, prairies began to develop approximately 8,300 years ago. Another shift in climate that resulted in an increase in moisture prompted the emergence of savanna-like habitats from 8,000 to 5,000 years before present. Moisture continued to increase in the southernmost region 5,000 years ago, resulting in an increase of forested systems (Taft et al. 2009). Fire, droughts, and grazing by native mammals helped to maintain the prairies and savannas until the arrival of European settlers, and the forests were maintained by droughts, wind, lightning, and occasional fire (Taft et al. 2009; NatureServe 2018).

Classification relationships

USFS Subregions: Central Till Plains and Grand Prairies (251D) and Central Till Plains-Beech-Maple Sections; Northern Grand Prairie (251Dc), Eastern Grand Prairie (251Dd), Southern Grand Prairie (251De), and Entrenched Valleys (222Hf) Subsections (Cleland et al. 2007)

U.S. EPA Level IV Ecoregion: Illinois/Indiana Prairies (54a) and Glaciated Wabash Lowlands (72b) (USEPA 2013)

National Vegetation Classification – Ecological Systems: North-Central Oak Barrens (CES202.727) (NatureServe 2018)

National Vegetation Classification – Plant Associations: Quercus velutina – Quercus ellipsoidalis – (*Quercus alba*)/Schizachyrium scoparium – Lupinus perennis Wooded Grassland (CEGL002492) (Nature Serve 2018)

Biophysical Settings: North-Central Interior Oak Savanna (BpS 4213940) (LANDFIRE 2009)

Illinois Natural Areas Inventory: Dry-mesic sand savanna (White and Madany 1978)

Ecological site concept

Outwash Savannas are located within the blue areas on the map (Figure 1). They occur on outwash plains. The soils are transitional Alfisols that are somewhat poorly to well-drained and deep, formed in shallow loess over outwash.

The historic pre-European settlement vegetation on this ecological site was dominated by prairie grasses and forbs interspersed with trees. Black oak (Quercus velutina Lam.) is the dominant tree, and little bluestem (Schizachyrium scoparium (Michx.) Nash.) and sideoats grama (Bouteloua curtipendula (Michx.) Torr.) are the dominant herbaceous species on the site. Other grasses present can include Indiangrass (Sorghastrum nutans (L.) Nash), prairie dropseed (Hesperostipa spartea (A. Gray) A. Gray), and big bluestem (Andropogon gerardii Vitman) (White and Madany 1978; NatureServe 2018). Forbs typical of an undisturbed plant community associated with this ecological site include prairie goldenrod (Oligoneuron album (Nutt.) G.L. Nesom) and slimflower scurfpea (Psoralidium tenuiflorum (Pursh) Rydb.) (White and Madany; Taft et al. 1997). Fire is the primary disturbance factor that maintains this ecological site, while periodic drought and large mammal grazing are secondary factors (LANDFIRE 2009).

Associated sites

	Outwash Forest Shallow loess over outwash Alfisols including Camden, Campton, Kendall, Martinsville, St. Charles
	Outwash Prairie Shallow loess over outwash Mollisols including Blackberry, Brenton, Clare, Elburn, Kishwaukee, Penfield, Plano, Proctor, Rodman, Shipshe, and Waupecan

Similar sites

R108XA010IL	Loess Upland Savanna
	Loess Upland Savannas occur on uplands and parent material is deep loess

Table 1. Dominant plant species

Tree	(1) Quercus velutina
Shrub	Not specified
Herbaceous	(1) Schizachyrium scoparium(2) Bouteloua curtipendula

Physiographic features

Outwash Savannas occur on outwash plains. They are situated on elevations ranging from approximately 400 to 1164 feet ASL. The site does not experience flooding but rather generates runoff to adjacent, downslope ecological sites (Table 1).

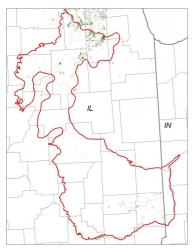


Figure 1. Figure 1. Location of Outwash Savanna ecological site within MLRA 108A.

Table 2. Representative physiographic features

Slope shape across	(1) Convex
Slope shape up-down	(1) Convex
Landforms	(1) Outwash plain
Runoff class	Low to medium
Elevation	122–355 m
Slope	0–10%
Water table depth	38–203 cm
Aspect	Aspect is not a significant factor

Climatic features

The Illinois and Iowa Deep Loess and Drift, Eastern Part falls into the hot-summer humid continental climate (Dfa) and the humid subtropical continental climate (Cfa) Köppen-Geiger climate classifications (Peel et al. 2007). The two main factors that drive the climate of the MLRA are latitude and weather systems. Latitude, and the subsequent reflection of solar input, determines air temperatures and seasonal variations. Solar energy varies across the seasons, with summer receiving three to four times as much energy as opposed to winter. Weather systems (air masses and cyclonic storms) are responsible for daily fluctuations of weather conditions. High-pressure systems are responsible for settled weather patterns where sun and clear skies dominate. In fall, winter, and spring, the polar jet stream is responsible for the creation and movement of low-pressure systems. The clouds, winds, and precipitation associated with a low-pressure system regularly follow high-pressure systems every few days (Angel n.d.).

The soil temperature regime of MLRA 108A is classified as mesic, where the mean annual soil temperature is between 46 and 59°F (USDA-NRCS 2006). Temperature and precipitation occur along a north-south gradient, where temperature and precipitation increase the further south one travels. The average freeze-free period of this ecological site is about 181 days, while the frost-free period is about 150 days (Table 2). The majority of the precipitation occurs as rainfall in the form of convective thunderstorms during the growing season. Average annual precipitation is approximately 40 inches, which includes rainfall plus the water equivalent from snowfall (Table 3). The average annual low and high temperatures are 42 and 61°F, respectively.

Climate data and analyses are derived from 30-year averages gathered from four National Oceanic and Atmospheric Administration (NOAA) weather stations contained within the range of this ecological site (Table 4).

Table 3. Representative climatic features

Frost-free period (characteristic range)	146-154 days
--	--------------

Freeze-free period (characteristic range)	176-188 days
Precipitation total (characteristic range)	991-1,067 mm
Frost-free period (actual range)	142-156 days
Freeze-free period (actual range)	166-188 days
Precipitation total (actual range)	940-1,067 mm
Frost-free period (average)	150 days
Freeze-free period (average)	181 days
Precipitation total (average)	1,016 mm

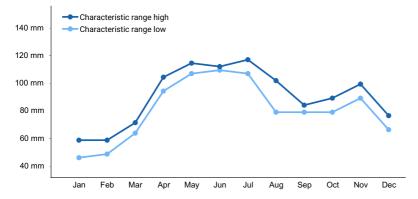


Figure 2. Monthly precipitation range

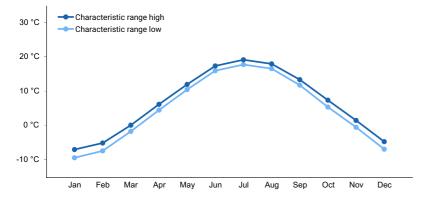


Figure 3. Monthly minimum temperature range

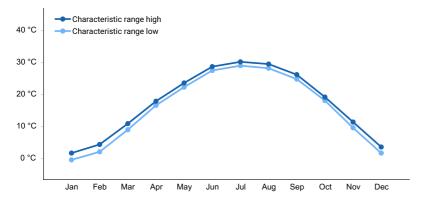


Figure 4. Monthly maximum temperature range

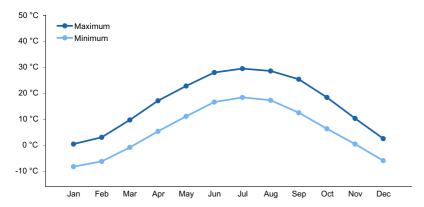


Figure 5. Monthly average minimum and maximum temperature

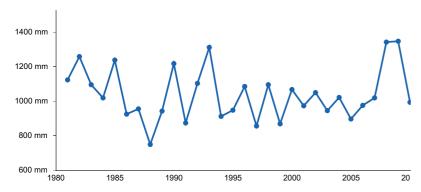


Figure 6. Annual precipitation pattern

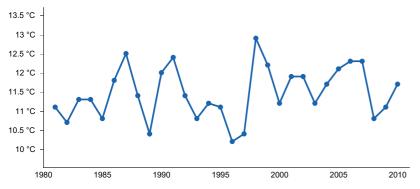


Figure 7. Annual average temperature pattern

Climate stations used

- (1) TUSCOLA [USC00118684], Tuscola, IL
- (2) MATTOON [USC00115430], Mattoon, IL
- (3) PARIS STP [USC00116610], Paris, IL
- (4) PAW PAW 2 NW [USC00116661], Paw Paw, IL

Influencing water features

Outwash Savannas are not influenced by wetland or riparian water features. Precipitation is the main source of water for this ecological site. Infiltration is moderate to slow (Hydrologic Groups B and C), and surface runoff is low to medium. Surface runoff contributes some water to downslope ecological sites (Figure 4).

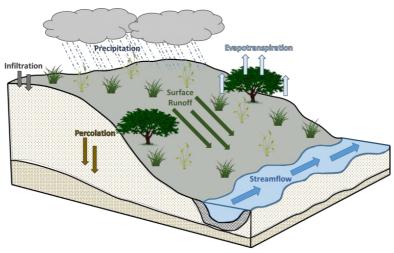


Figure 8. Figure 4. Hydrologic cycling in Outwash Savanna ecological site.

Soil features

Soils of Outwash Savannas are in the Alfisols order, further classified as Mollic Hapludalfs, Mollic Oxyaquic Hapludalfs, and Udollic Endoaqualfs with slow to moderate infiltration and low to medium runoff potential. The soil series associated with this site includes Barony, Batavia, Dresden, Harvard, Kaneville, Millbrook, and Virgil (Figure 5). The parent material is shallow loess over outwash, and the soils are somewhat poorly to well-drained and deep. Soil pH classes are strongly acid to moderately alkaline. A strongly contrasting textural stratification (28+ inches) may be present in some soils of this ecological site (Table 5).

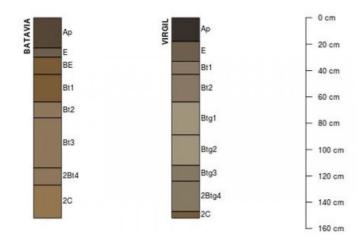


Figure 9. Figure 5. Profile sketches of soil series associated with Outwash Savanna.

Table 4. Representative soil features

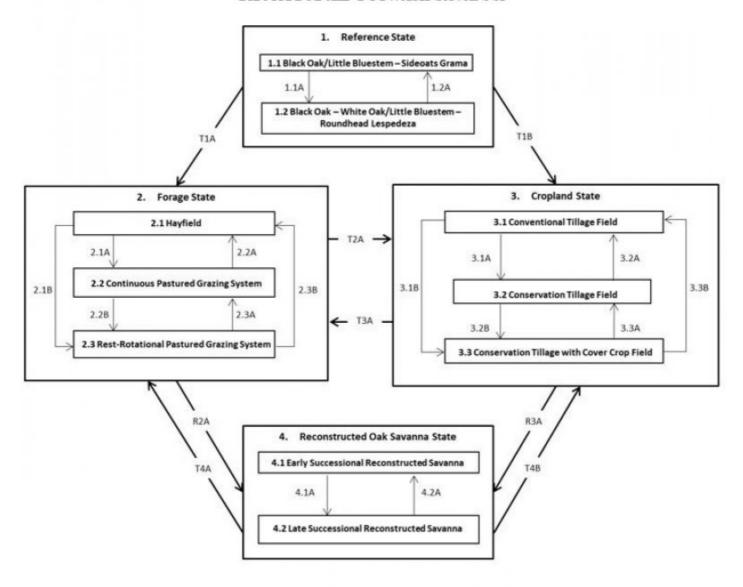
Parent material	(1) Outwash
Family particle size	(1) Fine-silty(2) Fine-loamy over sandy or sandy-skeletal
Drainage class	Somewhat poorly drained to well drained
Permeability class	Slow to moderately slow
Soil depth	203 cm

Ecological dynamics

The information in this Ecological Site Description, including the state-and-transition model (STM), was developed based on historical data, current field data, professional experience, and a review of the scientific literature. As a result, all possible scenarios or plant species may not be included. Key indicator plant species, disturbances, and

ecological processes are described to inform land management decisions.

The MLRA lies within the tallgrass prairie ecosystem of the Midwest. The heterogeneous topography of the area results in variable microclimates and fuel matrices that in turn support prairies, savannas, and forests. Outwash Savannas form an aspect of this vegetative continuum. This ecological site occurs on outwash plains on somewhat poorly to well-drained soils. Species characteristic of this ecological site consist of herbaceous vegetation with scattered trees.


Fire is a critical disturbance factor that maintains Outwash Savannas. Fire intensity typically consisted of periodic fires occurring every 1 to 5 years (LANDFIRE 2009). Ignition sources included summertime lightning strikes from convective storms and bimodal, human ignitions during the spring and fall seasons. Native Americans regularly set fires to improve sight lines for hunting, driving large game, improving grazing and browsing habitat, agricultural clearing, and enhancing vital ethnobotanical plants (Barrett 1980; White 1994).

Drought and herbivory by native ungulates have also played a role in shaping this ecological site. The periodic episodes of reduced soil moisture in conjunction with the somewhat poorly to well-drained soils have favored the proliferation of plant species tolerant of such conditions. Drought can also slow the growth of plants and result in dieback of certain species. Bison (Bos bison) grazing, while present, served a more limited role in community composition and structure than lands further west. Prairie elk (Cervus elaphus) and white-tailed deer (Odocoileus virginianus) likely contributed to woody species reduction but are also considered to be of a lesser impact compared to the west (LANDFIRE 2009). When coupled with fire, periods of drought and herbivory can further delay the establishment of woody vegetation (Pyne et al. 1996).

Today, Outwash Savannas have been greatly reduced as a result of human-driven type-conversion to agricultural production land. A return to the historic plant community may not be possible following extensive land modification, but long-term conservation agriculture or savanna reconstruction can help to restore some biotic diversity and ecological function. The state-and-transition model that follows provides a detailed description of each state, community phase, pathway, and transition. This model is based on available experimental research, field observations, literature reviews, professional consensus, and interpretations.

State and transition model

R108AY014IL OUTWASH SAVANNA

Code	Process
1.1A	Extended fire return interval in excess of 5 years
1.2A	Mixed or replacement fire
T1A, T3A, T4A	Cultural treatments are implemented to increase forage quality and yield
2.1A	Mechanical harvesting is replaced with domestic livestock and continuous grazing
2.1B	Mechanical harvesting is replaced with domestic livestock and rest-rotational grazing
2.2A, 2.3B	Domestic livestock grazing is replaced by mechanical harvesting
2.2B	Implementation of rest-rotational grazing
2.3A	Implementation of continuous grazing
T1B, T2A, T4B	Agricultural conversion via tillage, seeding, and non-selective herbicide
3.1A	Less tillage, residue management
3.1B	Less tillage, residue management, and implementation of cover cropping
3.2B	Implementation of cover cropping
3.2A, 3.3B	Intensive tillage, remove residue, and reinitiate monoculture row cropping
3.3A	Remove cover cropping
R2A, R3A	Site preparation, non-native species control, and native seeding
4.1A	Invasive species control and implementation of disturbance regimes
4.2A	Drought or improper timing/use of management actions

The reference plant community is categorized as a mesic oak savanna, dominated by herbaceous vegetation and scattered trees. The two community phases within the reference state are dependent on periodic fires. Surface fires are the dominant fire regime, comprising approximately 96 percent of all fires and occurring every five years. Mixed and replacement fires comprise the remaining 4 percent, occurring approximately every 3 and 1 years, respectively (LANDFIRE 2009). Fire intensity and return intervals alter species composition, cover, and extent, while regular fire intervals keep woody species from encroaching. Episodic droughts and storm damage have more localized impacts in the reference phases, but do contribute to overall species composition, diversity, cover, and productivity.

Community 1.1 Black Oak/Little Bluestem - Sideoats Grama

Sites in this reference community phase are dominated by a mix of grasses and forbs with scattered trees. Black oak is the dominant tree on the site, but white oak (*Quercus alba*L.) may also be present. The tree layer comprises no more than 20 percent cover and trees size class is medium (9 to 21-inch DBH). Vegetative cover is continuous (up to 100 percent) and plants can reach heights up to 3 feet tall (LANDFIRE 2009). Little bluestem, sideoats grama, Indiangrass, porcupinegrass and big bluestem are the dominant warm-season grasses present on the site. Characteristic forbs can include prairie goldenrod, slimflower scurfpea, small skullcap (*Scutellaria parvula*Michx.), and roundhead lespedeza (*Lespedeza capitata*Michx.) (White and Madany 1978; NatureServe 2018). Surface fires every 5 years will maintain this class, but an extended fire return interval will shift the community to phase 1.2 (LANDFIRE 2009).

Dominant plant species

- black oak (Quercus velutina), tree
- little bluestem (Schizachyrium scoparium), grass
- sideoats grama (Bouteloua curtipendula), grass

Community 1.2 Black Oak - White Oak/Little Bluestem - Roundhead Lespedeza

This reference community phase represents a successional shift as a result of an extended fire return interval. This fire-free period allows woody shrubs to establish, including American hazelnut (*Corylus americana* Walter), smooth sumac (*Rhus glabraL.*), and New Jersey tea (*Ceanothus americanus* L) (NatureServe 2018). Tree cover increases to as much as 60 percent, and tree size class moves from medium to large (21 to 33-inch DBH). As the woody canopy increases, forbs become a more prominent herbaceous ground cover (NatureServe 2018). Surface fires every 5 years will maintain this class, but mixed or replacement fires will shift the community back to phase 1.1 (LANDFIRE 2009; NatureServe 2018).

Dominant plant species

- black oak (Quercus velutina), tree
- white oak (Quercus alba), tree
- little bluestem (Schizachyrium scoparium), grass
- roundhead lespedeza (Lespedeza capitata), other herbaceous

Pathway 1.1A Community 1.1 to 1.2

Extended fire return interval in excess of 5 years.

Pathway 1.2A Community 1.2 to 1.1

Mixed or replacement fire.

State 2 Forage State The forage state occurs when the reference state is converted to a farming system that emphasizes domestic livestock production known as grassland agriculture. Fire suppression, periodic cultural treatments (e.g., clipping, drainage, soil amendment applications, planting new species and/or cultivars, mechanical harvesting) and grazing by domesticated livestock transition and maintain this state (USDA-NRCS 2003). Early settlers seeded non-native species, such as smooth brome (*Bromus inermis* Leyss.) and Kentucky bluegrass (*Poa pratensis* L.), to help extend the grazing season (Smith 1998). Over time, as lands were continuously harvested or grazed by herds of cattle, the non-native species were able to spread and expand across the landscape, reducing the native species diversity and ecological function.

Community 2.1 Hayfield

Sites in this community phase consist of forage plants that are planted and mechanically harvested. Mechanical harvesting removes much of the aboveground biomass and nutrients that feed the soil microorganisms (Franzluebbers et al. 2000; USDA-NRCS 2003). As a result, soil biology is reduced leading to decreases in nutrient uptake by plants, soil organic matter, and soil aggregation. Frequent biomass removal can also reduce the site's carbon sequestration capacity (Skinner 2008).

Community 2.2 Continuous Pastured Grazing System

This community phase is characterized by continuous grazing where domestic livestock graze a pasture for the entire season. Depending on stocking density, this can result in lower forage quality and productivity, weed invasions, and uneven pasture use. Continuous grazing can also increase the amount of bare ground and erosion and reduce soil organic matter, cation exchange capacity, water-holding capacity, and nutrient availability and retention (Bharati et al. 2002; Leake et al. 2004; Teague et al. 2011). Smooth brome, Kentucky bluegrass, and white clover (*Trifolium repens* L.) are common pasture species used in this phase. Their tolerance to continuous grazing has allowed these species to dominate, sometimes completely excluding the native vegetation.

Community 2.3 Rest-Rotation Pastured Grazing System

This community phase is characterized by rotational grazing where the pasture has been subdivided into several smaller paddocks. Through the development of a grazing plan, livestock utilize one or a few paddocks, while the remaining area is rested allowing plants to restore vigor and energy reserves, deepen root systems, develop seeds, as well as allow seedling establishment (Undersander et al. 2002; USDA-NRCS 2003). Rest-rotation pastured grazing systems include deferred rotation, rest rotation, high intensity – low frequency, and shortduration methods. Vegetation is generally more diverse and can include orchardgrass (*Dactylis glomerata* L.), timothy (Phleum pretense L.), red clover (*Trifolium pratense* L.), and alfalfa (*Medicago sativa* L.). The addition of native prairie species can further bolster plant diversity and, in turn, soil function. This community phase promotes numerous ecosystem benefits including increasing biodiversity, preventing soil erosion, maintaining and enhancing soil quality, sequestering atmospheric carbon, and improving water yield and quality (USDA-NRCS 2003).

Pathway 2.1A Community 2.1 to 2.2

Mechanical harvesting is replaced with domestic livestock utilizing continuous grazing.

Pathway 2.1B Community 2.1 to 2.3

Mechanical harvesting is replaced with domestic livestock utilizing rotational grazing.

Pathway 2.2A Community 2.2 to 2.1

Domestic livestock are removed, and mechanical harvesting is implemented.

Pathway 2.2B Community 2.2 to 2.3

Rotational grazing replaces continuous grazing.

Pathway 2.3B Community 2.3 to 2.1

Domestic livestock are removed, and mechanical harvesting is implemented.

Pathway 2.3A Community 2.3 to 2.2

Continuous grazing replaces rotational grazing.

State 3 Cropland State

The continuous use of tillage, row-crop planting, and chemicals (i.e., herbicides, fertilizers, etc.) has effectively eliminated the reference community and many of its natural ecological functions in favor of crop production. Corn and soybeans are the dominant crops for the site, and common wheat (*Triticum aestivumL*.) and alfalfa (*Medicago sativaL*.) may be rotated periodically. These areas are likely to remain in crop production for the foreseeable future.

Community 3.1 Conventional Tillage Field

Sites in this community phase typically consist of monoculture row-cropping maintained by conventional tillage practices. They are cropped in either continuous corn or corn-soybean rotations. The frequent use of deep tillage, low crop diversity, and bare soil conditions during the non-growing season negatively impacts soil health. Under these practices, soil aggregation is reduced or destroyed, soil organic matter is reduced, erosion and runoff are increased, and infiltration is decreased, which can ultimately lead to undesirable changes in the hydrology of the watershed (Tomer et al. 2005).

Community 3.2 Conservation Tillage Field

This community phase is characterized by rotational crop production that utilizes various conservation tillage methods to promote soil health and reduce erosion. Conservation tillage methods include strip-till, ridge-till, vertical-till, or no-till planting systems. Strip-till keeps seedbed preparation to narrow bands less than one-third the width of the row where crop residue and soil consolidation are left undisturbed in-between seedbed areas. Strip-till planting may be completed in the fall and nutrient application either occurs simultaneously or at the time of planting. Ridge-till uses specialized equipment to create ridges in the seedbed and vegetative residue is left on the surface in between the ridges. Weeds are controlled with herbicides and/or cultivation, seedbed ridges are rebuilt during cultivation, and soils are left undisturbed from harvest to planting. Vertical-till systems employ machinery that lightly tills the soil and cuts up crop residue, mixing some of the residue into the top few inches of the soil while leaving a large portion on the surface. No-till management is the most conservative, disturbing soils only at the time of planting and fertilizer application. Compared to conventional tillage systems, conservation tillage methods can improve soil ecosystem function by reducing soil erosion, increasing organic matter and water availability, improving water quality, and reducing soil compaction.

Community 3.3 Conservation Tillage Field/Alternative Crop Field

This community phase applies conservation tillage methods as described above as well as adds cover crop practices. Cover crops typically include nitrogen-fixing species (e.g., legumes), small grains (e.g., rye, wheat, oats), or forage covers (e.g., turnips, radishes, rapeseed). The addition of cover crops not only adds plant diversity but

also promotes soil health by reducing soil erosion, limiting nitrogen leaching, suppressing weeds, increasing soil organic matter, and improving the overall soil ecosystem. In the case of small grain cover crops, surface cover and water infiltration are increased, while forage covers can be used to graze livestock or support local wildlife. Of the three community phases for this state, this phase promotes the greatest soil sustainability and improves ecological functioning within a cropland system.

Pathway 3.1A Community 3.1 to 3.2

Tillage operations are greatly reduced, crop rotation occurs on a regular interval, and crop residue remains on the soil surface.

Pathway 3.1B Community 3.1 to 3.3

Tillage operations are greatly reduced or eliminated, crop rotation occurs on a regular interval, crop residue remains on the soil surface, and cover crops are planted following crop harvest.

Pathway 3.2A Community 3.2 to 3.1

Intensive tillage is utilized, and monoculture row-cropping is established.

Pathway 3.2B Community 3.2 to 3.3

Cover crops are implemented to minimize soil erosion.

Pathway 3.3B Community 3.3 to 3.1

Intensive tillage is utilized, cover crop practices are abandoned, monoculture row-cropping is established, and crop rotation is reduced or eliminated.

Pathway 3.3A Community 3.3 to 3.2

Cover crop practices are abandoned.

State 4

Reconstructed Oak Savanna State

Savanna reconstructions have become an important tool for repairing natural ecological functions and providing habitat protection for numerous grassland dependent species. Because the historic plant and soil biota communities of the tallgrass prairie were highly diverse with complex interrelationships, historic savanna replication cannot be guaranteed on landscapes that have been so extensively manipulated for extended timeframes (Kardol and Wardle 2010; Fierer et al. 2013). Therefore, ecological restoration should aim to aid the recovery of degraded, damaged, or destroyed ecosystems. A successful restoration will have the ability to structurally and functionally sustain itself, demonstrate resilience to the natural ranges of stress and disturbance, and create and maintain positive biotic and abiotic interactions (SER 2002). The reconstructed savanna state is the result of a long-term commitment involving a multi-step, adaptive management process. Oak plantings or selective tree thinning of non-oak species will be required to reproduce the overstory canopy (Asbjornsen et al. 2005). Diverse, species-rich seed mixes may be important to utilize as they allow the site to undergo successional stages that exhibit changing composition and dominance over time (Smith et al. 2010). On-going management via prescribed fire and/or light grazing will help the site progress from an early successional community dominated by annuals and some weeds to a later seral stage composed of native perennial grasses, forbs, shrubs, and eventually mature bur oaks. Establishing a prescribed fire regime that mimics natural disturbance patterns can increase native species cover and diversity while reducing

cover of non-native forbs and grasses. Light grazing alone can help promote species richness, while grazing accompanied with fire can control the encroachment of undesirable woody vegetation (Brudvig et al. 2007).

Community 4.1

Early Successional Reconstructed Oak Savanna

This community phase represents early community assembly and is highly dependent on the timing and priority of planting and/or tree thinning operations and the herbaceous seed mix utilized. If oak planting is needed, acorns should be planted shortly after harvest as acorns germinate shortly after seedfall and require no cold stratification. Browse protection may need to be installed to protect newly established seedlings from animal predation. If selective tree removal is needed, canopy reduction should encompass between 16 to 45 percent of the undesirable species in a single year (Asbjornsen et al. 2005). The seed mix should look to include a diverse mix of native coolseason and warm-season annual and perennial grasses and forbs typical of the reference state. Native, coolseason annuals can help to provide litter that promotes cool, moist soil conditions to the benefit of the other species in the seed mix. The first season following site preparation and seeding will typically result in annuals and other volunteer species forming most the vegetative cover. Control of non-native species, particularly perennial species, is crucial at this point to ensure they do not establish before the native vegetation (Martin and Wilsey 2012). After the first season, native warm-season grasses should begin to become more prominent on the landscape and over time close the canopy.

Community 4.2

Late Successional Reconstructed Oak Savanna

Appropriately timed disturbance regimes (e.g., prescribed fire) applied to the early successional community phase can help increase the beta diversity, pushing the site into a late successional community phase over time. While oak savanna communities are dominated by grasses, these species can suppress forb establishment and reduce overall diversity and ecological functioning (Martin and Wilsey 2006; Williams et al. 2007). Reducing accumulated plant litter from the tall grasses allows more light and nutrients to become available for forb recruitment, allowing for greater ecosystem complexity (Wilsey 2008). Prescribed fire should be used on a cycle no less than every five years to allow the oaks to establish and mature.

Pathway 4.1A Community 4.1 to 4.2

Selective herbicides are used to control non-native species, and prescribed fire and/or light grazing help to increase the native species diversity and control non-oak woody vegetation.

Pathway 4.2A Community 4.2 to 4.1

Reconstruction experiences a decrease in native species diversity from drought or improper timing of management actions (e.g., reduced fire frequency, use of non-selective herbicides).

Transition T1A State 1 to 2

Cultural treatments to enhance forage quality and yield transitions the site to the forage state (2).

Transition T1B State 1 to 3

Tillage, seeding of agricultural crops, and non-selective herbicide transition the site to the cropland state (4).

Transition T2A State 2 to 3

Tillage, seeding of agricultural crops, and non-selective herbicide transition this site to the cropland state (3).

Restoration pathway R2A State 2 to 4

Site preparation, invasive species control, and seeding native species transition this site to the reconstructed oak savanna state (4).

Transition T3A State 3 to 2

Cultural treatments to enhance forage quality and yield transitions the site to the forage state (2).

Restoration pathway R3A State 3 to 4

Site preparation, invasive species control, and seeding native species transition this site to the reconstructed oak savanna state (4).

Transition T4A State 4 to 2

Cultural treatments to enhance forage quality and yield transition the site to the forage state (2).

Transition T4B State 4 to 3

Tillage, seeding of agricultural crops, and non-selective herbicide transition this site to the cropland state (3).

Additional community tables

Inventory data references

No field plots were available for this site. A review of the scientific literature and professional experience were used to approximate the plant communities for this provisional ecological site. Information for the state-and-transition model was obtained from the same sources. All community phases are considered provisional based on these plots and the sources identified in this ecological site description.

Other references

Angel, J. No date. Climate of Illinois Narrative. Illinois State Water Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign. Available at https://www.isws.illinois.edu/statecli/General/Illinois-climate-narrative.htm. Accessed 8 November 2018.

Asbjornsen, H., L.A. Brudvig, C.M. Mabry, C.W. Evans, and H.M. Karnitz. 2005. Defining reference information for restoring ecologically rare tallgrass oak savannas in the midwestern United States. Journal of Forestry 103: 345-350.

Barrett, S.W. 1980. Indians and fire. Western Wildlands Spring: 17-20.

Bharati, L., K.-H. Lee, T.M. Isenhart, and R.C. Schultz. 2002. Soil-water infiltration under crops, pasture, and established riparian buffer in Midwestern USA. Agroforestry Systems 56: 249-257.

Brudvig, L.A., C.M. Mabry, J.R. Miller, and T.A. Walker. 2007. Evaluation of central North American prairie management based on species diversity, life form, and individual species metrics. Conservation Biology 21: 864-874.

Cleland, D.T., J.A. Freeouf, J.E. Keys, G.J. Nowacki, C. Carpenter, and W.H. McNab. 2007. Ecological Subregions: Sections and Subsections of the Coterminous United States. USDA Forest Service, General Technical Report WO-

76. Washington, DC. 92 pps.

Fierer, N., J. Ladau, J.C. Clemente, J.W. Leff, S.M. Owens, K.S. Pollard, R. Knight, J.A. Gilbert, and R.L. McCulley. 2013. Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science 342: 621-624.

Franzluebbers, A.J., J.A. Stuedemann, H.H. Schomberg, and S.R. Wilkinson. 2000. Soil organic C and N pools under long-term pasture management in the Southern Piedmont USA. Soil Biology and Biochemistry 32:469-478.

Karol, P. and D.A. Wardle. 2010. How understanding aboveground-belowground linkages can assist restoration ecology. Trends in Ecology and Evolution 25: 670-679.

LANDFIRE. 2009. Biophysical Setting 4213940 North-Central Interior Oak Savanna. In: LANDFIRE National Vegetation Dynamics Models. USDA Forest Service and US Department of Interior. Washington, DC.

Leake, J., D. Johnson, D. Donnelly, G. Muckle, L. Boddy, and D. Read. 2004. Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Canadian Journal of Botany 82: 1016-1045.

Martin, L.M. and B.J. Wilsey. 2006. Assessing grassland restoration success: relative roles of seed additions and native ungulate activities. Journal of Applied Ecology 43: 1098-1110.

Martin, L.M. and B.J. Wilsey. 2012. Assembly history alters alpha and beta diversity, exotic-native proportions and functioning of restored prairie plant communities. Journal of Applied Ecology 49: 1436-1445.

NatureServe. 2018. NatureServe Explorer: An online encyclopedia of life [web application]. Version 7.1 NatureServe, Arlington, VA. Available at http://explorer.natureserve.org. (Accessed 29 April 2019).

Peel, M.C., B.L. Finlayson, and T.A. McMahon. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences 11: 1633-1644.

Pyne, S.J., P.L. Andrews, and R.D. Laven. 1996. Introduction to Wildland Fire, Second Edition. John Wiley and Sons, Inc. New York, New York. 808 pps.

Schwegman, J.E., G.B. Fell, M. Hutchinson, G. Paulson, W.M. Shepherd, and J. White. 1973. Comprehensive Plan for the Illinois Nature Preserves System, Part 2 The Natural Divisions of Illinois. Illinois Nature Preserves Commission, Rockford, IL. 32 pps.

Skinner, R.H. 2008. High biomass removal limits carbon sequestration potential of mature temperate pastures. Journal for Environmental Quality 37: 1319-1326.

Smith, D.D., D. Williams, G. Houseal, and K. Henderson. 2010. The Tallgrass Prairie Center Guide to Prairie Restoration in the Upper Midwest. University of Iowa Press, Iowa City, IA. 338 pps.

Society for Ecological Restoration [SER] Science & Policy Working Group. 2002. The SER Primer on Ecological Restoration. Available at: http://www.ser.org/. (Accessed 28 February 2017).

Taft, J.B., G.S. Wilhelm, D.M. Ladd, and L.A. Masters. 1997. Floristic Quality Assessment for vegetation in Illinois, a method for assessing vegetation integrity. Erigenia 15: 3-95.

Taft, J.B., R.C. Anderson, L.R. Iverson, and W.C. Handel. 2009. Chapter 4: Vegetation ecology and change in terrestrial ecosystems. In: C.A. Taylor, J.B. Taft, and C.E. Warwick (eds.). Canaries in the Catbird Seat: The Past, Present, and Future of Biological Resources in a Changing Environment. Illinois Natural Heritage Survey Special Publication 30, Prairie Research Institute, University of Illinois at Urbana-Champaign. 306 pps.

Teague, W.R., S.L. Dowhower, S.A. Baker, N. Haile, P.B. DeLaune, and D.M. Conover. 2011. Grazing management impacts on vegetation, soil biota and soil chemical, physical and hydrological properties in tall grass prairie. Agriculture, Ecosystems and Environment 141: 310-322.

Tomer, M.D., D.W. Meek, and L.A. Kramer. 2005. Agricultural practices influence flow regimes of headwater streams in western lowa. Journal of Environmental Quality 34:1547-1558.

Undersander, D., B. Albert, D. Cosgrove, D. Johnson, and P. Peterson. 2002. Pastures for Profit: A Guide to Rotational Grazing (A3529). University of Wisconsin-Extension and University of Minnesota Extension Service. 43 pps.

United States Department of Agriculture – Natural Resources Conservation Service (USDA-NRCS). 2003. National Range and Pasture Handbook, Revision 1. Grazing Lands Technology Institute. 214 pps.

United States Department of Agriculture – Natural Resource Conservation Service (USDA-NRCS). 2006. Land Resource Regions and Major Land Resource Areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. 682 pps.

U.S. Environmental Protection Agency [EPA]. 2013. Level III and Level IV Ecoregions of the Continental United States. Corvallis, OR, U.S. EPA, National Health and Environmental Effects Research Laboratory, map scale 1:3,000,000. Available at http://www.epa.gov/eco-research/level-iii-andiv-ecoregions-continental-united-states. (Accessed 1 March 2017).

White, J. and M.H. Madany. 1978. Classification of natural communities in Illinois. In: J. White. Illinois Natural Areas Inventory Technical Report. Illinois Natural Areas Inventory, Department of Landscape Architecture, University of Illinois at Urbana/Champaign. 426 pps.

White, J. 1994. How the terms savanna, barrens, and oak openings were used in early Illinois. In: J. Fralisch, ed. Proceedings of the North American Conference on Barrens and Savannas. Illinois State University, Normal, IL.

Williams, D.A., L.L. Jackson, and D.D Smith. 2007. Effects of frequent mowing on survival and persistence of forbs seeded into a species-poor grassland. Restoration Ecology 15: 24-33.

Wilsey, B.J. 2008. Productivity and subordinate species response to dominant grass species and seed source during restoration. Restoration Ecology 18: 628-637.

Contributors

Lisa Kluesner Kristine Ryan Sarah Smith Tiffany Justus

Approval

Suzanne Mayne-Kinney, 11/05/2024

Acknowledgments

This project could not have been completed without the dedication and commitment from a variety of staff members (Table 6). Team members supported the project by serving on the technical team, assisting with the development of state and community phases of the state-and-transition model, providing peer review and technical editing, and conducting quality control and quality assurance reviews.

Table 6. List of primary contributors and reviewers.

Organization Name Title Location
Natural Resources Conservation Service:
Scott Brady, Acting Regional Ecological Site Specialist, Havre, MT
Stacey Clark, Regional Ecological Site Specialist, St. Paul, MN
Tonie Endres, Senior Regional Soil Scientist, Indianapolis, IN

Tiffany Justus, Soil Scientist, Aurora, IL Lisa Kluesner, Ecological Site Specialist, Waverly, IA Kevin Norwood, Soil Survey Regional Director, Indianapolis, IN Kristine Ryan, MLRA Soil Survey Leader, Aurora, IL Sarah Smith, Soil Scientist, Aurora, IL

This site was originally approved by Chris Tecklenburg, 5/01/2020.

Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

Author(s)/participant(s)	
Contact for lead author	
Date	07/02/2024
Approved by	Suzanne Mayne-Kinney
Approval date	
Composition (Indicators 10 and 12) based on	Annual Production

Indicators

values):

nc	ndicators		
1.	Number and extent of rills:		
2.	Presence of water flow patterns:		
3.	Number and height of erosional pedestals or terracettes:		
4.	Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground):		
5.	Number of gullies and erosion associated with gullies:		
6.	Extent of wind scoured, blowouts and/or depositional areas:		
7.	Amount of litter movement (describe size and distance expected to travel):		

8. Soil surface (top few mm) resistance to erosion (stability values are averages - most sites will show a range of

9.	Soil surface structure and SOM content (include type of structure and A-horizon color and thickness):
10.	Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff:
11.	Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site):
12.	Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):
	Dominant:
	Sub-dominant:
	Other:
	Additional:
13.	Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence):
14.	Average percent litter cover (%) and depth (in):
15.	Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annual-production):
16.	Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site:
17.	Perennial plant reproductive capability: